Resumen
Las enfermedades cardiovasculares constituyen la primera causa de morbilidad y mortalidad en el mundo, tanto en los países desarrollados como en los que están en vías de desarrollo. La dislipidemia –asociada a la disfunción endotelial- y a los fenómenos inflamatorios vasculares, son los procesos iniciales en la patogénesis de la enfermedad arterial arterioesclerótica. Es evidente la asociación directa y lineal entre los niveles de colesterol de baja densidad y el riesgo de enfermedad arterial arterioesclerótica, al igual que el efecto benéfico de la intervención con fármacos que actúan en diferentes niveles (estatinas, ezetimibe, fibratos, anticuerpos monoclonales contra la PCSK9, entre otros).
Por su parte, la hipertrigliceridemia, y los niveles bajos de colesterol de alta densidad, al igual que otros parámetros como el colesterol no-HDL y otras lipoproteínas, también juegan un papel importante en la etiopatogenia de la enfermedad arterioesclerótica, y existe evidencia en favor de la modificación de dichos parámetros. Los nuevos fármacos han cambiado de forma sustancial los desenlaces cardiovasculares en individuos con alto riesgo cardiovascular, y en individuos con intolerancia a las estatinas. Las diferentes guías internacionales para el manejo de la dislipidemia comparten muchos aspectos respecto al manejo farmacológico y no farmacológico.
Sin embargo, existen algunas diferencias importantes entre ellas, incluso en la forma de abordar individuos con situaciones especiales de dislipidemia (embarazo, enfermedad renal crónica, entre otras).
Referencias
1. Bakhai S, Bhardwaj A, Sandhu P, et al. Optimisation of lipids for prevention of cardiovascular disease in a primary care. BMJ Open Qual. 2018;7(3):e000071.
2. Wilson PWF, Polonsky TS, Miedema MD, et al. Systematic Review for the 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/ NLA/PCNA Guideline on the Management of Blood Cholesterol: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2019;73(24):3210-3227.
3. Lloyd-Jones DM, Braun LT, Ndumele CE, et al. Use of Risk Assessment Tools to Guide Decision-Making in the Primary Prevention of Atherosclerotic Cardiovascular Disease: A Special Report From the American Heart Association and American College of Cardiology. J Am Coll Cardiol. 2019;73(24):3153-3167. DOI: 10.1016/j.jacc.2018.11.005.
4. Sandesara PB, Virani SS, Fazio S, et al. The Forgotten Lipids: Triglycerides, Remnant Cholesterol, and Atherosclerotic Cardiovascular Disease Risk. Endocr Rev. 2018;40(2):537-557. DOI: 10.1210/er.2018-00184.
5. Soran H, Adam S, Durrington PN. Optimising treatment of hyperlipidaemia: Quantitative evaluation of UK, USA and European guidelines taking account of both LDL cholesterol levels and cardiovascular disease risk. Atherosclerosis. 2018;278:135-142.
6. Cesena FHY, Laurinavicius AG, Valente VA, et al. Low-density lipoproteincholesterol lowering in individuals at intermediate cardiovascular risk: Percent reduction or target level? Clin Cardiol. 2018;41(3):333-338.
7. Karr S. Epidemiology and management of hyperlipidemia. Am J Manag Care. 2017;23(9 Suppl):S139-S148.
8. Mensah GA, Roth GA, Fuster V. The Global Burden of Cardiovascular Diseases and Risk Factors: 2020 and Beyond. J Am Coll Cardiol. 2019;74(20):2529-2532.
9. Gheorghe A, Griffiths U, Murphy A, et al. The economic burden of cardiovascular disease and hypertension in low- and middle-income countries: a systematic review. BMC Public Health. 2018;18(1):975. DOI: 10.1186/ s12889-018-5806-x.
10. Joseph P, Leong D, McKee M, et al. Reducing the Global Burden of Cardiovascular Disease, Part 1: The Epidemiology and Risk Factors. Circ Res. 2017;121(6):677-694.
11. Schargrodsky H, Hernández-Hernández R, Champagne BM, et al. CARMELA: assessment of cardiovascular risk in seven Latin American cities. Am J Med. 2008;121(1):58-65.
12. Vinueza R, Boissonnet CP, Acevedo M, et al. Dyslipidemia in seven Latin American cities: CARMELA study. Prev Med. 2010;50(3):106-11.
13. Mora S. Nonfasting for Routine Lipid Testing: From Evidence to Action. JAMA Intern Med. 2016;176(7):1005-1006.
14. Rifai N, Young IS, Nordestgaard BG, et al. Nonfasting Sample for the Determination of Routine Lipid Profile: Is It an Idea Whose Time Has Come? Clin Chem. 2016;62(3):428-435.
15. Mora S, Rifai N, Buring JE, et al. Fasting compared with nonfasting lipids and apolipoproteins for predicting incident cardiovascular events. Circulation. 2008;118(10):993-1001.
16. Millar JS, Cuchel M. Cholesterol metabolism in humans: a review of methods and comparison of results. Curr Opin Lipidol. 2018;29(1):1-9.
17. de Boer JF, Kuipers F, Groen AK. Cholesterol Transport Revisited: A New Turbo Mechanism to Drive Cholesterol Excretion. Trends Endocrinol Metab. 2018;29(2):123-133.
18. Reeskamp LF, Meessen ECE, Groen AK. Transintestinal cholesterol excretion in humans. Curr Opin Lipidol. 2018;29(1):10-17.
19. Castro Cabezas M, Burggraaf B, Klop B. Dyslipidemias in clinical practice. Clin Chim Acta. 2018;487:117-125.
20. Mach F, Baigent C, Catapano AL, et al. ESC Scientific Document Group. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J. 2020;41(1):111- 188. DOI: 10.1093/eurheartj/ehz455
21. Graham IM, Catapano AL, Wong ND. Current guidelines on prevention with a focus on dyslipidemias. Cardiovasc Diagn Ther. 2017;7(Suppl 1):S4-S10.
22. Ramasamy I. Update on the laboratory investigation of dyslipidemias. Clin Chim Acta. 2018;479:103-125.
23. Jellinger PS, Handelsman Y, Rosenblit PD, et al. American Association Of Clinical Endocrinologists And American College Of Endocrinology Guidelines For Management Of Dyslipidemia And Prevention Of Cardiovascular Disease. Endocr Pract. 2017;23(Suppl 2):1-87.
24. Cooney MT, Dudina AL, Graham IM. Value and limitations of existing scores for the assessment of cardiovascular risk: a review for clinicians. J Am Coll Cardiol. 2009;54:1209-1227.
25. Ministerio de Salud y Protección Social – Colciencias. Guía de práctica clínica para la prevención, detección temprana, diagnóstico, tratamiento y seguimiento de las dislipidemias en la población mayor de 18 años. 2014 - Guía No. 27. Bogotá: Ministerio de Salud y Protección Social; 2014.
26. Muñoz OM, García AA, Fernández D, et al. Guía de práctica clínica para la prevención, detección temprana, diagnóstico, tratamiento y seguimiento de las dislipidemias en la población mayor de 18 años. Acta Med Colomb. 2014;39(Supl 2):5-27.
27. Muñoz OM, Rodríguez NI, Ruíz-Morales A, et al. Validación de los modelos de predicción de Framingham y PROCAM como estimadores del riesgo cardiovascular en una población colombiana. Rev Colomb Cardiol. 2014;21(4):202-212.
28. Jellinger PS. American Association of Clinical Endocrinologists/American College of Endocrinology Management of Dyslipidemia and Prevention of Cardiovascular Disease Clinical Practice Guidelines. Diabetes Spectr. 2018;31(3):234-245.
29. Cavallari I, Delli Veneri A, Maddaloni E, et al. Comparison of Lipid-Lowering Medications and Risk for Cardiovascular Disease in Diabetes. Curr Diab Rep. 2018;18(12):138. DOI: 10.1007/s11892-018-1117-y.
30. Warraich HJ, Rana JS. Diabetic Dyslipidemia: Epidemiology and Prevention of Cardiovascular Disease and Implications of Newer Therapies. Curr Cardiol Rep. 2018;20(12):125. DOI: 10.1007/s11886-018-1068-6.
31. Kocyigit D, Gurses KM, Tokgozoglu L. Anti-inflammatory therapy in atherosclerosis. Front Biosci (Landmark Ed). 2020;25:242-269.
32. Mendis S, Chestnov O. The global burden of cardiovascular diseases: a challenge to improve. Curr Cardiol Rep. 2014;16(5):486.
33. Ranganathan P, Pramesh CS, Aggarwal R. Common pitfalls in statistical analysis: Absolute risk reduction, relative risk reduction, and number needed to treat. Perspect Clin Res. 2016;7(1):51-53.
34. Gigerenzer G, Wegwarth O, Feufel M. Misleading communication of risk. BMJ. 2010;341:c4830.
35. Pletcher MJ, Moran AE. Cardiovascular Risk Assessment. Med Clin North Am. 2017;101(4):673-688.
36. Ferrari R, Aguiar C, Alegria E, et al. Current practice in identifying and treating cardiovascular risk, with a focus on residual risk associated with atherogenic dyslipidaemia. Eur Heart J Suppl. 2016;18(Suppl C):C2-C12.
37. Humphries KH, Mancini GBJ. Reduction of LDL-C-related residual cardiovascular risk with ezetimibe: are mechanistic considerations warranted in practice? Eur Heart J. 2017;38(29):2276-2278. DOI: 10.1093/eurheartj/ehx275.
38. Krähenbühl S, Pavik-Mezzour I, von Eckardstein A. Unmet Needs in LDL-C Lowering: When Statins Won’t Do! Drugs. 2016;76(12):1175-1190.
39. Grupo de trabajo de Dislipemia Aterogénica de la Sociedad Española de Arteriosclerosis y Grupo Europeo de Expertos Practical recommendations for the management of cardiovascular risk associated with atherogenic dyslipidemia, with special attention to residual risk. Spanish adaptation of a European Consensus of Experts. Clin Investig Arterioscler. 2017;29(4):168-177.
40. Pérez A. Tratamiento estatino-céntrico de la dislipemia. ¿Nuevo paradigma basado en la evidencia o solo parte de la evidencia? Endocrinol Nutr. 2016;63:1-3.
41. Bello-Chavolla OY, Kuri-García A, Ríos-Ríos M, et al. Familial combined hyperlipidemia: current knowledge, perspectives, and controversies. Rev Invest Clin. 2018;70(5):224-236.
42. Zitouni K, Steyn M, Earle KA. Residual renal and cardiovascular disease risk in conventionally-treated patients with type 2 diabetes: the potential of non-traditional biomarkers. Minerva Med. 2018;109(2):103-115.
43. Hernández-Mijares A, Ascaso JF, Blasco M, et al. Residual cardiovascular risk of lipid origin. Components and pathophysiological aspects. Clin Investig Arterioscler. 2019;31(2):75-88. DO: 10.1016/j.arteri.2018.06.007.
44. Shapiro MD, Fazio S. Biologic bases of residual risk of cardiovascular events: A flawed concept. Eur J Prev Cardiol. 2018;25(17):1831-1835.
45. Cziraky MJ, Watson KE, Talbert RL. Targeting low HDL-cholesterol to decrease residual cardiovascular risk in the managed care setting. J Manag Care Pharm. 2008;14(8 Suppl):S3-28.
46. Mata P, Alonso R, Pérez de Isla L. Atherosclerotic cardiovascular disease risk assessment in familial hypercholesterolemia: does one size fit all? Curr Opin Lipidol. 2018;29(6):445-452.
47. Toth PP, Granowitz C, Hull M, et al. High Triglycerides Are Associated With Increased Cardiovascular Events, Medical Costs, and Resource Use: A RealWorld Administrative Claims Analysis of Statin-Treated Patients With High Residual Cardiovascular Risk. J Am Heart Assoc. 2018;7(15):e008740. DOI: 10.1161/JAHA.118.008740.
48. Benjamin EJ, Virani SS, Callaway CW, et al. Heart disease and stroke statistics—2018 update: a report from the American Heart Association. Circulation. 2018;137(12):e67-e492.
49. Han JS, Kim K, Jung Y, et al. Metabolic Alterations Associated with Atorvastatin/Fenofibric Acid Combination in Patients with Atherogenic Dyslipidaemia: A Randomized Trial for Comparison with Escalated-Dose Atorvastatin. Sci Rep. 2018;8(1):14642. DOI: 10.1038/s41598-018-33058-x.
50. Varbo A, Benn M, Tybjaerg-Hansen A, et al. Elevated remnant cholesterol causes both low?grade inflammation and ischemic heart disease, whereas elevated low-density lipoprotein cholesterol causes ischemic heart disease without inflammation. Circulation. 2013;128(12):1298-1309.
51. Varbo A, Benn M, Tybjaerg-Hansen A, et al. Remnant cholesterol as a causal risk factor for ischemic heart disease. J Am Coll Cardiol. 2013;61(4):427-436.
52. Schwartz GG, Abt M, Bao W, et al. Fasting triglycerides predict recurrent ischemic events in patients with acute coronary syndrome treated with statins. J Am Coll Cardiol. 2015;65(21):2267-2275.
53. Nichols GA, Philip S, Reynolds K, et al. Increased residual cardiovascular risk in patients with diabetes and high versus normal triglycerides despite statin-controlled LDL cholesterol. Diabetes Obes Metab. 2019;21(2):366- 371. DOI: 10.1111/dom.13537.
54. Vincent J. Lipid Lowering Therapy for Atherosclerotic Cardiovascular Disease: It Is Not So Simple. Clin Pharmacol Ther. 2018;104(2):220-224.
55. Tarantino N, Santoro F, Correale M, et al. Fenofibrate and Dyslipidemia: Still a Place in Therapy? Drugs. 2018;78(13):1289-1296.
56. Hallén J, Sreeharan N. Development of triglyceride-lowering drugs to address residual cardiovascular risk: strategic and clinical considerations. Eur Heart J Cardiovasc Pharmacother. 2018;4(4):237-242.
57. Alkhalil M. Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, reality or dream in managing patients with cardiovascular disease. Curr Drug Metab. 2019;20(1):72-82. DOI: 10.2174/1389200219666180 816141827.
58. Evans MC, Stalam T, Miller M. Cardiovascular Risk Assessment in Patients with Hypertriglyceridemia. Curr Cardiol Rep. 2018;20(9):71. DOI: 10.1007/s11886-018-1013-8.
59. Enkhmaa B, Prakash N, Berglund L. Non-HDL-C levels and residual cardiovascular risk: Do population-specific precision approaches offer any advantages? Atherosclerosis. 2018;274:230-231.
60. Patel KV, Pandey A, de Lemos JA. Conceptual Framework for Addressing Residual Atherosclerotic Cardiovascular Disease Risk in the Era of Precision Medicine. Circulation. 2018;137(24):2551-2553.
61. Toth PP, Jones SR, Slee A, et al. Relationship between lipoprotein subfraction cholesterol and residual risk for cardiovascular outcomes: A post hoc analysis of the AIM-HIGH trial. J Clin Lipidol. 2018;12(3):741-747.
62. Hadjiphilippou S, Ray KK. Lipids and Lipoproteins in Risk Prediction. Cardiol Clin. 2018;36(2):213-220.
63. Adams V, Linke A. Impact of exercise training on cardiovascular disease and risk. Biochim Biophys Acta Mol Basis Dis. 2019;1865(4):728-734.
64. Dalen JE, Devries S. Diets to prevent coronary heart disease 1957-2013: what have we learned? Am J Med. 2014;127(5):364-369.
65. Dussaillant C, Echeverría G, Rozowski J, et al. Egg intake and cardiovascular disease: a scientific literature review. Nutr Hosp. 2017;34(3):710-718.
66. Ramsden CE, Zamora D, Majchrzak-Hong S, et al. Re-evaluation of the traditional diet-heart hypothesis: analysis of recovered data from Minnesota Coronary Experiment (1968-73). BMJ. 2016;353:i1246. DOI: 10.1136/ bmj.i1246.
67. Calder PC. Lipids: A hole in the diet-heart hypothesis? Nat Rev Cardiol. 2016;13(7):385-386.
68. DiNicolantonio JJ, O’Keefe JH. Omega-6 vegetable oils as a driver of coronary heart disease: the oxidized linoleic acid hypothesis. Open Heart. 2018;5(2):e000898. DOI: 10.1136/openhrt-2018-000898.
69. Zhong VW, Van Horn L, Cornelis MC, et al. Associations of Dietary Cholesterol or Egg Consumption With Incident Cardiovascular Disease and Mortality. JAMA. 2019;321(11):1081-1095.
70. Malakou E, Linardakis M, Armstrong MEG, et al. The Combined Effect of Promoting the Mediterranean Diet and Physical Activity on Metabolic Risk Factors in Adults: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. Nutrients. 2018;10(11). pii: E1577. DOI: 10.3390/ nu10111577.
71. Patnode CD, Evans CV, Senger CA, et al. Behavioral Counseling to Promote a Healthful Diet and Physical Activity for Cardiovascular Disease Prevention in Adults Without Known Cardiovascular Disease Risk Factors: Updated Systematic Review for the U.S. Preventive Services Task Force [Internet]. JAMA. 2017;318(2):175-193.
72. Perez-Martinez P, Katsiki N, Mikhailidis DP. The Role of n-3 Fatty Acids in Cardiovascular Disease: Back to the Future. Angiology. 2020;71(1):10-16.
73. Chiavaroli L, Nishi SK, Khan TA. Portfolio Dietary Pattern and Cardiovascular Disease: A Systematic Review and Meta-analysis of Controlled Trials. Prog Cardiovasc Dis. 2018;61(1):43-53.
74. García A, Muñoz O, Fernández D. Alternativas terapéuticas al manejo farmacológico con estatinas en adultos con dislipidemia. Revisión sistemática de la literatura y recomendaciones generales. Rev Colomb Cardiol. 2015;22(4):179-186.
75. Wang DD, Hu FB. Dietary Fat and Risk of Cardiovascular Disease: Recent Controversies and Advances. Annu Rev Nutr. 2017;37:423-446.
76. Clifton PM. Diet, exercise and weight loss and dyslipidaemia. Pathology. 2019;51(2):222-226.
77. Boden WE, Probstfield JL, Anderson T, et al. AIM-HIGH Investigators. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. New Engl J Med. 2011;365(24):2255-2267.
78. Landray MJ, Haynes R, Hopewell JC. HPS2-THRIVE Collaborative Group. Effects of extended release niacin with laropiprant in high-risk patients. New Engl J Med. 2014;371(3):203-12.
79. Jun M, Foote C, Lv J, et al. Effects of fibrates on cardiovascular outcomes: a systematic review and meta.analysis. Lancet. 2010;375(9729):1875-84.
80. Bhatt DL, Steg PG, Miller M, et al. REDUCE-IT Investigators. Cardiovascular Risk Reduction with Icosapent Ethyl for Hypertriglyceridemia. N Engl J Med. 2019;380(1):11-22.
81. Abdelhamid AS1, Brown TJ, Brainard JS, et al. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2018;7:CD003177.
82. Cannon CP, Blazing MA, Giuglino RP, et al. IMPROVE-IT Investigators. Ezetimibe added to statin therapy after acute coronary síndromes. New Engl J Med. 2015;372(25):2387-97.
83. Adhyaru BB, Jacobson TA. Role of Non-Statins, LDL-C Thresholds, and Special Population Considerations: A Look at the Updated 2016 ACC Consensus Committee Recommendations. Curr Atheroscler Rep. 2017;19(6):29. DOI:10.1007/s11883-017-0666-x.
84. Lloyd-Jones DM, Morris PB, Ballantyne CM. 2017 Focused Update of the 2016 ACC Expert Consensus Decision Pathway on the Role of Non-Statin Therapies for LDL-Cholesterol Lowering in the Management of Atherosclerotic Cardiovascular Disease Risk: A Report of the American College of Cardiology Task Force on Expert Consensus Decision Pathways. J Am Coll Cardiol. 2017;70(14):1785-1822.
85. Lu Y, Cheng Z, Zhao Y, et al. Efficacy and safety of long-term treatment with statins for coronary heart disease: A Bayesian network meta-analysis. Atherosclerosis. 2016;254:215-227.
86. Rygiel K. Hypertriglyceridemia - Common Causes, Prevention and Treatment Strategies. Curr Cardiol Rev. 2018;14(1):67-76.
87. Kassner U, Dippel M, Steinhagen-Thiessen E. Severe hypertriglyceridemia : Diagnostics and new treatment principles. Internist (Berl). 2017;58(8):866-876.
88. Zhao S, Wang F, Dai Y, et al. Efficacy and safety of fenofibrate as an add-on in patients with elevated triglyceride despite receiving statin treatment. Int J Cardiol. 2016;221:832-836.
89. González Santos P. The combinations of statins and fibrates: pharmacokinetic and clinical implications. Clin Investig Arterioscler. 2014;26(Suppl 1):7-11.
90. Soran H, Dent R, Durrington P. Evidence-based goals in LDL-C reduction. Clin Res Cardiol. 2017;106(4):237-248.
91. Fragasso G, Margonato A, Spoladore R, et al. Metabolic effects of cardiovascular drugs. Trends Cardiovasc Med. 2019;29(3):176-187.
92. Sakellarios AI, Fotiadis DI. The pleiotropic effect of statins on the atherosclerotic plaque and coronary heart disease. Trends Cardiovasc Med. 2019;29(8):456-457.
93. Yebyo HG, Aschmann HE, Kaufmann M, et al. Comparative effectiveness and safety of statins as a class and of specific statins for primary prevention of cardiovascular disease: A systematic review, meta-analysis, and network meta-analysis of randomized trials with 94,283 participants. Am Heart J. 2019;210:18-28.
94. Nayak A, Hayen A, Zhu L, et al. Legacy effects of statins on cardiovascular and all-cause mortality: a meta-analysis. BMJ Open. 2018;8(9):e020584. DOI: 10.1136/bmjopen-2017-020584.
95. Schade DS, Shey L, Eaton RP. Prescribing Statins to Reduce Cardiovascular Disease - Ten Common Misconceptions. Am J Med. 2019;132(8):897-899.
96. Klug E, Raal FJ, Marais AD, et al. South African dyslipidaemia guideline consensus statement: 2018 update A joint statement from the South African Heart Association (SA Heart) and the Lipid and Atherosclerosis Society of Southern Africa (LASSA). S Afr Med J. 2018;108(11b):973-1000.
97. National Institute for Health and Care Excellence. Cardiovascular disease: risk assessment and reduction, including lipid modification (Clinical Guideline CG 181): NICE, London: [Internet]. Available at: https://www.nice.org.uk/guidance/CG181/chapter/1-Recommendations.
98. Thanassoulis G, Sniderman AD, Pencina MJ. A Long-term Benefit Approach vs Standard Risk-Based Approaches for Statin Eligibility in Primary Prevention. JAMA Cardiol. 2018;3(11):1090-1095. DOI: 10.1001/jamacardio.2018.3476.
99. Curfman G. Statin-Associated Myopathy-An Elusive Clinical Problem. JAMA Intern Med. 2018;178(9):1230. DOI: 10.1001/jamainternmed.2018.3128.
100. Nguyen KA, Li L, Lu D, et al. A comprehensive review and meta-analysis of risk factors for statin-induced myopathy. Eur J Clin Pharmacol. 2018;74(9):1099-1109.
101. Casula M, Mozzanica F, Scotti L, et al. Statin use and risk of new-onset diabetes: A meta-analysis of observational studies. Nutr Metab Cardiovasc Dis. 2017;27(5):396-406.
102. He Y, Li X, Gasevic D, et al. Statins and Multiple Noncardiovascular Outcomes: Umbrella Review of Meta-analyses of Observational Studies and Randomized Controlled Trials. Ann Intern Med. 2018;169(8):543-553.
103. Laufs U, Filipiak KJ, Gouni-Berthold I, et al. SAMS expert working group. Practical aspects in the management of statin-associated muscle symptoms (SAMS). Atheroscler Suppl. 2017;26:45-55.
104. Barry AR, Beach JE, Pearson GJ. Prevention and management of statin adverse effects: A practical approach for pharmacists. Can Pharm J (Ott). 2018;151(3):179-188.
105. Banach M, Mikhailidis DP. Statin Intolerance: Some Practical Hints. Cardiol Clin. 2018;36(2):225-231.
106. Taylor BA, Thompson PD. Statin-Associated Muscle Disease: Advances in Diagnosis and Management. Neurotherapeutics. 2018;15(4):1006-1017. DOI: 10.1007/s13311-018-0670-z.
107. Brown AS, Watson KE. Statin Intolerance. Rev Cardiovasc Med. 2018;19(S1):S9-S19.
108. Alonso R, Cuevas A, Cafferata A. Diagnosis and Management of Statin Intolerance. J Atheroscler Thromb. 2019;26(3):207-215.
109. Baigent C, Keech A, Kearney PM, et al. Efficacy and safety of cholesterollowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet. 2005;366(9493):1267-78.
110. Chou R, Dana T, Blazina I, et al. Statins for Prevention of Cardiovascular Disease in Adults Evidence Report and Systematic Review for the US Preventive Services Task Force. JAMA. 2016;316(19):2008-2024.
111. Seo YH, Seo DJ, Song IG, et al. Rationale of decreasing low-density lipoprotein cholesterol below 70 mg/dL in patients with coronary artery disease: A retrospective virtual histology. Intravascular ultrasound study. Cardiol J. 2018;25(6):674-682. DOI: 10.5603/CJ.a2018.0002.
112. Stone NJ, Robinson JG, Lichtenstein AH, et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/ American Heart Association Task Force on Practice Guidelines. Circulation. 2014;129;25:Suppl 2:S1-S45.
113. Cannon CP, Blazing MA, Giugliano RP, et al. Ezetimibe added to statin therapy after acute coronary syndromes. N Engl J Med. 2015;372(25):2387-97.
114. Bucholz EM, Rodday AM, Kolor K, et al. Prevalence and Predictors of Cholesterol Screening, Awareness, and Statin Treatment Among US Adults With Familial Hypercholesterolemia or Other Forms of Severe Dyslipidemia (1999-2014). Circulation. 2018;137(21):2218-2230. DOI: 10.1161/ CIRCULATIONAHA.117.032321.
115. Versmissen J, Oosterveer DM, Yazdanpanah M, et al. Efficacy of statins in familial hypercholesterolaemia: a long term cohort study. BMJ. 2008;337:a2423. DOI:10.1136/bmj.a2423.
116. deGoma EM, Ahmad ZS, O’Brien EC, et al . Treatment gaps in adults with heterozygous familial hypercholesterolemia in the United States: data from the CASCADE-FH registry. Circ Cardiovasc Genet. 2016;9(3):240-9.
117. Bove M, Cicero AFG, Borghi C. Emerging drugs for the treatment of hypercholesterolemia. Expert Opin Emerg Drugs. 2019;24(1):63-39. DOI: 10.1080/14728214.2019.1591372.
118. Ferrari F, Stein R, Motta MT, et al. PCSK9 Inhibitors: Clinical Relevance, Molecular Mechanisms, and Safety in Clinical Practice. Arq Bras Cardiol. 2019;112(4):453-460.
119. Duntas LH, Brenta G. The effect of thyroid disorders on lipid levels and metabolism. Med Clin North Am. 2012;96(2):269-281.
120. 121. Wici?ski M, ?ak J, Malinowski B, et al. PCSK9 signaling pathways and their potential importance in clinical practice. EPMA J. 2017;8(4):391-402.
121. Chirino AJ, Ary ML, Marshall SA. Minimizing the immunogenicity of protein therapeutics. Drug Discov Today. 2004;9(2):82-90.
122. Pendley C, Schantz A, Wagner C. Immunogenicity of therapeutic monoclonal antibodies. Curr Opin Mol Ther. 2003;5(2):172-9.
123. Seidah NG, Awan Z, Chretien M, et al. PCSK9: a key modulator of cardiovascular health. Circ Res. 2014;114(6):1022-1036.
124. Ridker PM, Tardif JC, Amarenco P, et al. Lipid-Reduction Variability and Antidrug-Antibody Formation with Bococizumab. N Engl J Med. 2017;376(16):1517-1526.
125. Landmesser U, Chapman MJ, Farnier M, et al. European Society of Cardiology/European Atherosclerosis Society Task Force consensus statement on proprotein convertase subtilisin/kexin type 9 inhibitors: practical guidance for use in patients at very high cardiovascular risk.. Eur Heart J. 2017;38(29):2245-2255.
126. Steffens D, Bramlage P, Scheeff C, et al. PCSK9 inhibitors and cardiovascular outcomes. Expert Opin Biol Ther. 2020;20(1):35-47.
127. Wilson PWF, Polonsky TS, Miedema MD, et al. Systematic Review for the 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/ NLA/PCNA Guideline on the Management of Blood Cholesterol: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2019;139: e1144–e1161.
128. McKenney JM, Koren MJ, Kereiakes DJ, et al. Safety and efficacy of a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 serine protease, SAR236553/REGN727, in patients with primary hypercholesterolemia receiving ongoing stable atorvastatin therapy. J Am Coll Cardiol. 2012;59(25):2344-53.
129. Sabatine MS, Giugliano RP, Keech AC, et al. Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease. N Engl J Med. 2017;376(18):1713-1722.
130. Nicholls SJ, Puri R, Anderson T, et al. Effect of Evolocumab on Progression of Coronary Disease in Statin-Treated Patients: The GLAGOV Randomized Clinical Trial. JAMA. 2016;316(22):2373-2384.
131. Giugliano RP, Mach F, Zavitz K, et al. Cognitive function in a randomized trial of evolocumab. N Engl J Med. 2017;377:633-643.
132. Blom DJ, Hala T, Bolognese M, et al. A 52-week placebo-controlled trial of evolocumab in hyperlipidemia. N Engl J Med. 2014;370(19):1809-19.
133. Sabatine MS, Giugliano RP, Wiviott SD, et al. Efficacy and safety of evolocumab in reducing lipids and cardiovascular events. N Engl J Med. 2015;372:1500-1509.
134. Raal F, Honarpour N, Blom DJ, et al. Trial evaluating evolocumab, a PCSK9 antibody, in patients with homozygous FH (TESLA): results of the randomized, double-blind, placebo-controlled trial. Atherosclerosis. 2014;235(2):e12.
135. Bruckert E, Blaha V, Stein EA, , et al. Trial assessing long-term use of PCSK9 inhibition in patients with genetic LDL disorders (TAUSSIG): Efficacy and safety in patients with homozygous familial hypercholesterolemia receiving lipid apheresis. Circulation. 2014;130(suppl 2):A17016.
136. Robinson JG, Nedergaard BS, Rogers WJ, et al. Effect of evolocumab or ezetimibe added to moderate- or high-intensity statin therapy on LDL-C lowering in patients with hypercholesterolemia: the LAPLACE-2 randomized clinical trial. JAMA. 2014;311(18):1870-1882.
137. Giugliano RP, Desai NR, Kohli P, et al. Efficacy, safety, and tolerability of a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 in combination with a statin in patients with hypercholesterolaemia (LAPLACE-TIMI 57): a randomised, placebo-controlled, dose-ranging, phase 2 study. Lancet. 2012;380(9858):2007-17.
138. Sullivan D, Olsson AG, Scott R, et al. Effect of a monoclonal antibody to PCSK9 on low-density lipoprotein cholesterol levels in statin-intolerant patients: the GAUSS randomized trial. JAMA. 2012;308(23):2497-506.
139. Stroes E, Colquhoun D, Sullivan D, et al. Anti-PCSK9 antibody effectively lowers cholesterol in patients with statin intolerance: the GAUSS-2 randomized, placebo-controlled phase 3 clinical trial of evolocumab. J Am Coll Cardiol. 2014;63(23):2541-2548.
140. Nissen SE, Dent-Acosta RE, Rosenson RS, et al. Comparison of PCSK9 Inhibitor Evolocumab vs Ezetimibe in Statin-Intolerant Patients: Design of the Goal Achievement After Utilizing an Anti-PCSK9 Antibody in StatinIntolerant Subjects 3 (GAUSS-3) Trial. Clin Cardiol. 2016;39:137-44.
141. Koren MJ, Lundqvist P, Bolognese M, et al-. Anti-PCSK9 monotherapy for hypercholesterolemia: the MENDEL-2 randomized, controlled phase III clinical trial of evolocumab. J Am Coll Cardiol. 2014;63(23):2531-2540.
142. Koren MJ, Scott R, Kim JB, et al. Efficacy, safety, and tolerability of a monoclonal antibody to proprotein convertasa subtilisin/kexin type 9 as monotherapy in patients with hypercholesterolaemia (MENDEL): a randomised, double-blind, placebo-controlled, phase 2 study. Lancet. 2012;380(9858):1995-2006.
143. Raal FJ, Stein EA, Dufour R, et al. PCSK9 inhibition with evolocumab (AMG 145) in heterozygous familial hypercholesterolaemia (RUTHERFORD-2): a randomised, double-blind, placebo-controlled trial. Lancet. 2015;385(9965):331-40.
144. Kiyosue A, Honarpour N, Kurtz C, et al. A phase 3 study of evolocumab (AMG 145) in statin-treated japanese patients at high cardiovascular risk. Am J Cardiol. 2016;117(1):40-7.
145. 146.US Food & drug administration. Drugs @FDA: FDA- Approved Drugs. [Internet]. Available at: www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&varApplNo=12552.
146. 147. Dent R, Joshi R, Djedjos C, et al. Evolocumab lowers LDL-C safely and effectively when self-administered in the at-home setting. SpringerPlus. 2016;5:300.
147. 148. European Medicines Agency. Praluent (alirocumab): EU summary of product characteristics. 2016.. [Internet]. (Accessed 20 September 2016). Available at: http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_Product-Information/WC500194521.pdf.
148. Schwartz GG, Bessac L, Berdan LG, et al. Effect of alirocumab, a monoclonal antibody to PCSK9, on long-term cardiovascular outcomes following acute coronary syndromes: rationale and design of the ODYSSEY outcomes trial. Am Heart J. 2014;168(5):682-9.
149. Bittner V. American College of Cardiology. Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With Alirocumab - ODYSSEY OUTCOMES. [Internet]. Available at: http://www.acc.org/latest-in-cardiology/clinical-trials/2018/03/09/08/02/odyssey-outcomes.
150. ODYSSEY Outcomes: Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With Alirocumab. [Internet]. (Accessed September 13 2016). Available at: https://clinicaltrials.gov/ct2/show/NCT01663402.
151. 152. Robinson JG, Farnier M, Krempf M, et al. Efficacy and safety of alirocumab in reducing lipids and cardiovascular events. N Engl J Med. 2015;372:1489-1499.
152. Kastelein JJ, Ginsberg HN, Langslet G, et al. ODYSSEY FH I and FH II: 78 week results with alirocumab treatment in 735 patients with heterozygous familial hypercholesterolaemia. Eur Heart J. 2015;36(43):2996- 3003.
153. Ginsberg HN, Rader DJ, Raal FJ, et al. Efficacy and safety of alirocumab in patients with heterozygous familial hypercholesterolemia and LDL-C of 160 mg/dl or higher. Cardiovasc Drugs Ther. 2016;30(5):473-483.
154. Kereiakes DJ, Robinson JG, Cannon CP, et al. Efficacy and safety of the proprotein convertase subtilisin/kexin type 9 inhibitor alirocumab among high cardiovascular risk patients on maximally tolerated statin therapy: the ODYSSEY COMBO I study. Am Heart J. 2015;169(6):906-915.
155. Food and Drug Administration (FDA). La FDA aprueba Praluent para tratar ciertos pacientes con colesterol alto. [acceso 30 de enero de 2020]. Disponible en: https://wayback.archive-it.org/7993/20170722081853/ https://www.fda.gov/News-Events/News-room/Comunicados-de-Prensa/ucm455917.htm
156. Farnier M, Gaudet D, Valcheva V, et al. Efficacy of alirocumab in high cardiovascular risk populations with or without heterozygous familial hypercholesterolemia: pooled analysis of eight ODYSSEY Phase 3 clinical program trials. Int J Cardiol. 2016;223:750-757.
157. Kastelein JJ, Kereiakes DJ, Cannon CP, et al. Effect of alirocumab dose increase on LDL lowering and lipid goal attainment in patients with dyslipidemia. Coron Artery Dis. 2017;28(3):190-197.
158. Jones PH, Bays HE, Chaudhari U, et al. Safety of alirocumab (a PCSK9 monoclonal antibody) from 14 randomized trials. Am J Cardiol. 2016;118(12):1805-1811.
159. Ray KK, Ginsberg HN, Davidson MH, et al. Reductions in atherogenic lipids and major cardiovascular events: a pooled analysis of 10 ODYSSEY trials comparing alirocumab with control. Circulation. 2016;134(24):1931-1943.
160. Zhang XL, Zhu QQ, Zhu L, et al. Safety and efficacy of anti-PCSK9 antibodies: a meta-analysis of 25 randomized, controlled trials. BMC Medicine. 2015;13(1):123.
161. Guedeney P, Giustino G, Sorrentino S, et al. Efficacy and safety of alirocumab and evolocumab: a systematic review and meta-analysis of randomized controlled trials. Eur Heart J. 2019. pii: ehz430. DOI: 10.1093/ eurheartj/ehz430.
162. Perry CM. Lomitapide: A Review of its Use in Adults with Homozygous Familial Hypercholesterolemia. Am J Cardiovasc Drugs. 2013;13(4):285-296.
163. Cuchel M, Meagher EA, du Toit Theron H, et al. Efficacy and safety of a microsomal triglyceride transfer protein inhibitor in patients with homozygous familial hypercholesterolaemia: a single-arm, open-label, phase 3 study. Lancet. 2013;381(9860):40-6.
164. Leipold R, Raal F, Ishak J, et al. The effect of lomitapide on cardiovascular outcome measures in homozygous familial hypercholesterolemia: A modelling analysis. Eur J Prev Cardiol. 2017;24(17):1843-1850.
165. Blom DJ, Fayad ZA, Kastelein JJ, et al. LOWER, a registry of lomitapidetreated patients with homozygous familial hypercholesterolemia: Rationale and design. J Clinical Lipidol. 2016;10(2):273-82.
166. Stefanutti C, Morozzi C, Di Giacomo S, et al. Management of homozygous familial hypercholesterolemia in real-world clinical practice: A report of 7 Italian patients treated in Rome with lomitapide and lipoprotein apheresis. J Clin Lipidol. 2016;10(4): 782-789.
167. Visser ME, Kastelein JJ, Stroes ES. Apolipoprotein B synthesis inhibition: results from clinical trials. Curr Opin Lipidol. 2010;21(4):319-323
168. Toth PP. Antisense therapy and emerging applications for the management of dyslipidemia. J Clin Lipidol. 2011;5(6):441-449.
169. Waldmann E, Vogt A, Crispin A, et al. Effect of mipomersen on LDL-cholesterol in patients with severe LDL-hypercholesterolaemia and atherosclerosis treated by lipoprotein apheresis (The MICA-Study). Atherosclerosis. 2017;259:20-25.
170. Duell PB, Santos RD, Kirwan BA, et al. Long-term mipomersen treatment is associated with a reduction in cardiovascular events in patients with familial hypercholesterolemia. J Clin Lipidol. 2016;10(4):1011-1021.
171. Panta R, Dahal K, Kunwar S. Efficacy and safety of mipomersen in treatment of dyslipidemia: A meta-analysis of randomized controlled trials. J Clin Lipidol. 2015;9(2):217-225.
172. Karalis DG, Hill AN, Clifton S, Wild RA. The risks of statin use in pregnancy: A systematic review. J Clin Lipidol. 2016;10(5):1081-1090.
173. Bateman BT, Hernandez-Diaz S, Fischer MA, et al. Statins and congenital malformations: cohort study. BMJ. 2015;350:h1035.
174. Haramburu F, Daveluy A, Miremont-Salamé G. Statins in pregnancy: new safety data are reassuring, but suspension of treatment is still advisable. BMJ. 2015;350:h1484.
175. Jacobson TA, Maki KC, Orringer CE, et al. National Lipid Association Recommendations for Patient-Centered Management of Dyslipidemia: Part 2. J Clin Lipidol. 2015;9(6 Suppl):S1-122.e1.
176. Catapano AL, Graham I, De Backer G, et al. 2016 ESC/EAS Guidelines for the Management of Dyslipidaemias. Eur Heart J. 2016;37(39):2999-3058.
177. Maggi P, Di Bagio A, Rusconi S, et al. Cardiovascular risk and dyslipidemia among persons living with HIV: a review. BMC Infect Dis. 2017;17(1):551.
178. Banach M, Dinca M, Ursoniu S, et al. A PRISMA-compliant systematic review and meta-analysis of randomized controlled trials investigating the effects of statin therapy on plasma lipid concentrations in HIV-infected patients. Pharmacol Res. 2016;111:343-356.
179. Raposeiras-Roubín S, Triant V. Ischemic Heart Disease in HIV: An In-depth Look at Cardiovascular Risk. Rev Esp Cardiol (Engl Ed). 2016;69(12):1204-1213.
180. Gili S, Grosso Marra W, D’Ascenzo F, et al. Comparative safety and efficacy of statins for primary prevention in human immunodeficiency viruspositive patients: a systematic review and meta-analysis. Eur Heart J. 2016;37(48):3600-3609.
181. Tonelli M, Wanner C; et al. Lipid management in chronic kidney disease: synopsis of the Kidney Disease: Improving Global Outcomes 2013 clinical practice guideline. Ann Intern Med. 2014;160(3):182.
182. Palmer SC, Navaneethan SD, Craig JC, et al. HMG CoA reductase inhibitors (statins) for people with chronic kidney disease not requiring dialysis. Cochrane Database Syst Rev. 2014;(5):CD007784.
183. Palmer SC, Navaneethan SD, Craig JC, et al. HMG CoA reductase inhibitors (statins) for dialysis patients. Cochrane Database Syst Rev. 2013;(9):CD004289.
184. Palmer SC, Navaneethan SD, Craig JC, et al. HMG CoA reductase inhibitors (statins) for kidney transplant recipients. Cochrane Database Syst Rev. 2014;(1):CD005019.
185. Su X, Zhang L, Lv J, et al. Effect of Statins on Kidney Disease Outcomes: A Systematic Review and Meta-analysis. Am J Kidney Dis. 2016;67(6):881-92.
186. Qin X, Dong H, Fang K, et al. The effect of statins on renal outcomes in patients with diabetic kidney disease: a systematic review and metaanalysis. Diabetes Metab Res Rev. 2017;33(6). DOI: 10.1002/dmrr.2901.
187. Baigent C, Landray MJ, Reith C, et al. The effects of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney disease (study of heart and renal protection): a randomised placebo-controlled trial. Lancet. 2011;377(9784):2181-92.
188. Zheng-Lin B, Ortiz A. Lipid Management in Chronic Kidney Disease: Systematic Review of PCSK9 Targeting. Drugs. 2018;78(2):215-229.
Palabras Clave
Cardiovascular
cLDL
estatinas
fibratos
riesgo
dieta
ezetimibe
PCSK9
Para citar
Vargas-Uricoechea, H., Ruiz, A. J., Gómez, E. A., Román-González, A., Castillo, J., Merchán, A., & Toro, J. M. (2020). Recomendaciones del panel de expertos sobre la fisiopatología diagnóstico y tratamiento de las dislipidemias en la población adulta.Asociación Colombiana de Endocrinología Diabetes y Metabolismo, Sociedad Colombiana de Cardiología y Cirugía Cardiovascular. Revista Colombiana De Endocrinología, Diabetes &Amp; Metabolismo, 7(1S), 4–36. https://doi.org/10.53853/encr.7.1S.573
Revista Colombiana de Endocrinología Diabetes y Metabolismo
Volumen 7 número 1S
Favoritos
Resumen
Antecedentes
En diciembre de 2019, en Wuhan (Hubei, China) se reportaron 27 personas con neumonía de etiología desconocida; en enero de 2020 se identificó como agente a un virus zoonótico de la familia Coronaviridae (SARS-CoV-2). A su vez, la enfermedad producida por SARS-CoV-2 se denominó COVID-19; el virus se transmite de persona a persona por gotitas respiratorias, contacto directo o fómites. La COVID-19 tiene un período de incubación de 0-24 días. Algunos individuos no desarrollan síntomas y la mayoría se recupera, sin tratamiento específico. La COVID-19 se definió como pandemia en marzo de 2020 (1- 3). Los efectos de la COVID-19 sobre el sistema endocrino aún no están bien establecidos; sin embargo, los individuos con diabetes mellitus (DM) que sufren COVID-19 tienen una mayor tasa de letalidad (entre el 10% y el 11%), lo cual establece que la DM es un factor de riesgo para desenlaces fatales entre aquellos que padecen COVID-19, algo similar a lo que se ha presentado por otras infecciones por coronavirus, como el síndrome respiratorio agudo grave (SARS) y el síndrome respiratorio de Oriente Medio (MERS-CoV). En un modelo en ratones transgénicos, se encontró que la célula del alvéolo pulmonar expresa el receptor de la dipeptidil peptidasa IV (DPP-IV). Por su parte, el MERS-CoV se une a dicho receptor; por lo tanto, se ha hipotetizado (a partir de dicho modelo) que la expresión del receptor de DPP-IV en la célula del alvéolo pulmonar podría estar involucrada en la asociación entre DM y un compromiso pulmonar inflamatorio más grave y prolongado en aquellos infectados por COVID-19.
Referencias
1. Wu F, Zhao S, Yu B, Chen YM, Wang W. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579(7798):265-9.
2. Zhu N, Zhang D, Wang W, Li X, Yang B. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med. 2020;382(8):727-33.
3. Zhang C, Huang S, Zheng F, Dai Y. Controversial treatments: an updated understanding of the Coronavirus Disease 2019. J Med Virol. 2020. doi: 10.1002/ jmv.25788.
4. Kulcsar KA, Coleman CM, Beck SE, Frieman MB. Comorbid diabetes results in immune dysregulation and enhanced disease severity following MERS-CoV infection. JCI Insight. 2019; 4:131774.
5. Lloyd AL, Kitron U, Perkins TA, Vazquez-Prokopec GM, Waller LA. The basic reproductive number for disease systems with multiple coupled heterogeneities. Math Biosci. 2020;321:108294.
6. Viceconte G, Petrosillo N. COVID-19 R0: Magic number or conundrum? Infect Dis Rep. 2020;12(1):8516.
7. Peeples L. Rethinking herd immunity. Nat Med. 2019;25(8):1178-80.
8. Wallinga, J, Lipsitch M. How generation intervals shape the relationship between growth rates and reproductive numbers. Proc Biol Sci. 2007;274:599- 604.
9. Anderson RM, May RM. Infectious Diseases of Humans: Dynamics and Control. Oxford, UK: Oxford Science Publications; 1992.
10. Brett T, Ajelli M, Liu QH, Krauland MG, Grefenstette JJ. Detecting critical slowing down in high-dimensional epidemiological systems. PLoS Comput Biol. 2020;16(3):e1007679.
11. Dudley MZ, Privor-Dumm L, Dubé È, MacDonald NE. Words matter: Vaccine hesitancy, vaccine demand, vaccine confidence, herd immunity and mandatory vaccination. Vaccine. 2020;38(4):709-11.
12. Kwok KO, Lai F, Wei WI, Wong SYS, Tang J. Herd Immunity - Estimating the Level Required to Halt the COVID-19 Epidemics in Affected Countries. J Infect. 2020. pii: S0163-4453(20)30154-7.
Palabras Clave
Coronavirus
Covid-19
SARS-CoV-2
Para citar
Vargas-Uricoechea, H. (2020). COVID-19 en Colombia e inmunidad de rebaño: ¿es momento de considerarla?. Revista Colombiana De Endocrinología, Diabetes &Amp; Metabolismo, 7(1), 57–59. https://doi.org/10.53853/encr.7.1.572
Revista Colombiana de Endocrinología Diabetes y Metabolismo
Volumen 7 número 1
Favoritos
Resumen
La enfermedad de Graves (EG) es una de las patologías más interesantes que competen al endocrinólogo. Siempre consideré que la orbitopatía (OG) era una rueda suelta en el manejo de la EG (además del más raro mixedema pretibial), y parecía que los oftalmólogos tampoco estaban muy familiarizados con ella. Algunos insistían en usar los epónimos de sus signos oculares, lo que nunca me pude aprender, y parece que ya se ha olvidado.
Los signos oculares aparecen aproximadamente en 1 de cada 4 pacientes, y cuando esto ocurre (además de encaminar al médico hacia el diagnóstico), generalmente son de naturaleza leve. Las OG moderadas y severas afortunadamente son menos frecuentes; el artículo de Gómez y colaboradores (1) nos actualiza en tan difícil tema.
La preferencia del endocrinólogo sobre el tratamiento de la EG ha variado a través del tiempo. La tiroidectomía fue la primera en desacreditarse porque, como se hacían subtotales, permitían la recurrencia del remanente tiroideo. Los antitiroideos, al principio muy de moda, empezaron a ser menos utilizados por el alto porcentaje de recurrencia. Algún autor recomendaba el uso concomitante de triyodotironina para disminuir los relapsos; sin embargo, el yodo radiactivo (I-131) empezó a posicionarse de primeras por su alta eficacia en la prevención de recurrencias, aunque había que manejar el hipotiroidismo de manera constante.
Referencias
1. Gomez C, Imitola A, Taboada LB et al. Orbitopatía tiroidea: protocolo de manejo basado en revisión de la evidencia. Rev Col Endocrinol Diab Metab. 2019;6(3):210-217.
2. Bartalena L. Graves’ Disease: Complications. [acceso 20 de febrero de 2020]. En: Feingold KR, Anawalt B, Boyce A, et al., editores. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000. Disponible en: https://www.ncbi.nlm.nih.gov/books/NBK285551/
3. Rosetti S, Tanda ML, Veronesi G, Masiello E, Premoli P, Gallo D, et al. Oral steroid prophylaxis for Graves’ orbitopathy after radioactive iodine treatment for Graves’ disease is not only effective, but also safe. J Endocrinol Invest. 2020 Mar;43(3):381-383.
Palabras Clave
Orbitopatía tiroidea
enfermedad de Graves (EG)
Para citar
Jácome Roca, A. (2020). Orbitopatía tiroidea. Revista Colombiana De Endocrinología, Diabetes &Amp; Metabolismo, 7(1), 56. https://doi.org/10.53853/encr.7.1.571
Revista Colombiana de Endocrinología Diabetes y Metabolismo
Volumen 7 número 1
Favoritos
Resumen
Las enfermedades endocrinas han estado presentes en el arte desde tiempos inmemoriales, seguramente debido a la baja frecuencia de presentación de algunas de ellas, o por la dificultad de poder realizar un diagnóstico certero. En la antigüedad, por ejemplo, la glándula tiroides no se veía de la misma forma que en los tiempos contemporáneos. En el Renacimiento, los primero dibujos que nos hablan de ella son los realizados por Leonardo da Vinci en 1510, pero desafortunadamente sus cuadernos desaparecieron después de su fallecimiento en 1519.
En la antigüedad se pensaba que la tiroides era una glándula laríngea que humectaba la tráquea y los pulmones; pero en 1543 Vesalio en De Humani Corporis Fabrica hizo que esta glándula fuera visible para los médicos.
La primera vez que se utilizó el nombre de glandulee thyroideae fue en 1656 en la monografía publicada por Thomas Wharton sobre las glándulas del cuerpo; este nombre surgió por su cercanía al cartílago y su forma de escudo.
Así pues, en general el conocimiento de las glándulas endocrinas y de las hormonas es muy reciente dentro de la historia de la medicina, motivo por el cual muchos investigadores médicos, como historiadores y artistas, han tratado de encontrar dentro del arte pictórico algunos trastornos endocrinológicos que en el momento en que fueron plasmados no se conocían.
Referencias
1. Fortoul van der Goes TI. La endocrinología en el arte. Entre la fantasía y la realidad. Rev. Fac. Med. (Méx.). 2017;60(4):58-60.
2. Vescia FG, Basso L. Goiters in the Renaissance. Vesalius. 1997 Jun;3(1):23-32.
3. Donnelly DE, Morrison PJ. Hereditary Gigantism-the biblical giant Goliath and his brothers. Ulster Med J. 2014 May;83(2):86-8.
4. Miranda M. Los médicos y el arte: una dualidad de beneficiosa reciprocidad. Rev.Med. Chile 2012;140(3):408-409.
5. Historiaum [Internet]. Víctor Hernández Ochando; 2015 [acceso 04 de marzo de 2020]. Los bufones de Velázquez. Disponible en:
https://www.historiarum.es/news/los-bufones-de-velazquez-por-victor-hernandez-ochando/
6. Ardila E. Historia clínica de Henri de Toulouse-Lautrec. Rev. Col. Endo. 2019;6(1):51-54.
Palabras Clave
Endocrinología
Arte
Para citar
Ardila, E. (2020). La endocrinología y el arte. Revista Colombiana De Endocrinología, Diabetes &Amp; Metabolismo, 7(1), 50–54. https://doi.org/10.53853/encr.7.1.570
Revista Colombiana de Endocrinología Diabetes y Metabolismo
Volumen 7 número 1
Favoritos
Resumen
El carcinoma adrenocortical (CAC) es un tumor maligno poco frecuente. La presentación clínica, por lo general, es por exceso de producción hormonal. La afectación del sistema venoso con trombos en la vena cava inferior (VCI) solo se reporta en un tercio de los casos. El presente estudio informa un caso de CAC con producción hormonal con trombo tumoral con extensión a la VCI y aurícula derecha asociado a embolia pulmonar. Se trata de una paciente de género femenino de 63 años con diagnóstico reciente de hipertensión arterial en manejo, quien consulta a urgencias por dolor abdominal asociado a náuseas, vómitos y pérdida de peso. Imágenes convencionales con hallazgos de masa en fosa suprarrenal derecha irresecable sin plano de clivaje para realizar algún tipo de procedimiento. Patología con diagnóstico de neoplasia de la corteza suprarrenal con extensa necrosis. Se inicia mitotano y esquema ambulatorio de quimioterapia.
Referencias
1. Sharma E, Dahal S, Sharma P, et al. The Characteristics and Trends in Adrenocortical Carcinoma: A United States Population Based Study. J Clin Med Res. 2018;10(8):636–640.
2. Allolio B, Fassnacht M. Clinical review: Adrenocortical carcinoma: clinical update. J Clin Endocrinol Metab. 2006;91(6):2027–2037.
3. Luton JP, Cerdas S, Billaud L, et al. Clinical Features of Adrenocortical Carcinoma, Prognostic Factors, and the Effect of Mitotane Therapy. N Engl J Med. 1990;322:1195–1201.
4. Libé R. Adrenocortical carcinoma (ACC): diagnosis, prognosis, and treatment. Front Cell Dev Biol. 2015;3:45.
5. Bilimoria KY, Shen WT, Elaraj D, et al. Adrenocortical carcinoma in the United States: treatment utilization and prognostic factors. Cancer. 2008;113(11):3130–3136.
6. Yadav R, Dassi V, Kumar A. Adrenocortical carcinoma with inferior vena cava thrombus: Renal preserving surgery. Indian J Urol. 2016;32(2):161–163.
7. Pronio A, Piroli S, Ciambeerlano B, et al. Adrenocortical carcinoma with inferior vena cava, left renal vein and right atrium tumor thrombus extension. Int J Surg Case Rep. 2015;15:137–139.
8. Paragliola RM, Torino F, Papi G, et al. Role of Mitotane in Adrenocortical Carcinoma - Review and State of the art. Eur Endocrinol. 2018;14(2):62–66.
9. Creemers SG, Hofland LJ, Korpershoek E, et al. Future directions in the diagnosis and medical tretment of adrenocortical carcinoma. EndocrRelat Cancer. 2016;23(1):R43-R69.
10. Dinnes J, Bancos I, Ferrante di Ruffano L, et al. Management of endocrine disease: Imaging for the diagnosis of malignancy in incidentally discovered adrenal masses: a systematic review an meta-analysis. Eur J Endocrinol. 2016;175(2):R51-R64.
11. Cuevas C, Raske M, Bush WH, et al. Imaging Primary and Secondary Tumor Thrombus of the Inferior Vena Cava: Multi-Detector Computed Tomography and Magnetic Resonance imaging. Curr Probl Diagn Radiol. 2006;35(3):90-101.
12. Bancos I, Tamhane S, Shah M, et al. Diagnosis of endocrine disease: The diagnostic performance of adrenal biopsy: a systematic review and metaanalysis. Eur J Endocrinol. 2016;175(2):R65-R80. 13. Gaujoux S, Weinandt M, Bonnet S, et al. Surgical treatment of adrenal carcinoma. J Visc Suerg. 2017;154(5):335-343.
Palabras Clave
carcinoma corticosuprarrenal
trombosis
vena cava inferior
atrios cardíacos
mitotan
Para citar
Fuentes, O. E., Molina, L., Rojas, L. J., & Gómez, C. M. (2020). Carcinoma adrenocortical con trombosis extensa: reporte de un caso. Revista Colombiana De Endocrinología, Diabetes &Amp; Metabolismo, 7(1), 46–48. https://doi.org/10.53853/encr.7.1.569
Revista Colombiana de Endocrinología Diabetes y Metabolismo
Volumen 7 número 1
Favoritos
Resumen
Los inhibidores del PCSK-9 se presentan como una excelente alternativa de tratamiento en aquellos casos de hipercolesterolemia que no alcanzan las metas con tratamiento usual con estatinas de alta potencia y ezetimiba, adicionalmente en los pacientes con intolerancia a estatinas que necesiten tener metas de colesterol LDL. En este caso exponemos la posibilidad de titular el tiempo de aplicación de PCSK-9i de acuerdo con las metas de los niveles de LDL.
Referencias
1. Alenghat FJ, Davis AM. Management of blood cholesterol. JAMA. 2019;321(8):800-1.
2. Cicero AF, Bove M, Borghi C. Pharmacokinetics, pharmacodynamics and clinical efficacy of non-statin treatments for hypercholesterolemia. Expert Opin Drug Metab Toxicol. 2018;14(1):9-15.
3. American Diabetes Association. Cardiovascular disease and risk management: standards of medical care in diabetes. Diabetes Care. 2019;2(1):S103-23.
Palabras Clave
hipercolesterolemia
inhibidores de hidroximetilglutaril-CoA reductasas
evolocumab
Para citar
Parra, G. A., Lindarte, H. H., & Rubio, A. F. (2020). Respuesta supraóptima a los inhibidores de PCSK-9: ¿es obligatorio darlos cada 2 semanas? A propósito de un caso. Revista Colombiana De Endocrinología, Diabetes &Amp; Metabolismo, 7(1), 43–44. https://doi.org/10.53853/encr.7.1.568
Revista Colombiana de Endocrinología Diabetes y Metabolismo
Volumen 7 número 1
Favoritos
Resumen
El presente artículo de revisión tiene como objetivo presentar, de forma resumida, la evidencia que existe sobre las repercusiones metabólicas a nivel de obesidad y diabetes, que se genera como consecuencia de la exposición a sustancias químicas exógenas, denominadas disruptores endocrinos (DE), a las cuales nos exponemos de forma cotidiana y que afectan nuestra salud y la de nuestra descendencia. Adicionalmente, con la presente revisión hacemos un llamado no solo a la comunidad médica, sino a los sectores involucrados en la producción, distribución y reglamentación del uso de estas sustancias, pues cada vez hay más evidencia de los efectos nocivos que pueden generar y debemos evitar su uso.
Los datos se obtuvieron de estudios clínicos aleatorizados y de una revisión en idioma español e inglés de los últimos 15 años, que incluyó los términos DeCS: disruptores endocrinos, con alternativa DeCS: sustancias disruptoras endocrinas y efecto disruptor endocrino, así como términos MeSH: endocrine disruptors y alternativas MeSH: disruptors, endocrine; endocrine disrupting chemicals; chemicals, endocrine disrupting; endocrine disruptor effect; disruptor effect, endocrine; effect, endocrine disruptor; endocrine disruptor effects; disruptor effects, endocrine; effects, endocrine disruptor.
Referencias
1. Bergman Å, Heindel J, Kasten T, Kidd K, Jobling S, Neira M, et al. The impact of endocrine disruption: a consensus statement on the state of the science. Environ Health Perspect. 2013;121(4):A104-6.
2. Zoeller R, Brown T, Doan L, Gore A, Skakkebaek N, Soto A, et al. Endocrinedisrupting chemicals and public health protection: a statement of principles from the Endocrine Society. Endocrinology. 2012;153(9):4097-110.
3. Ferre P. The biology of peroxisome proliferator-activated receptors. Diabetes. 2004;53(1):S43-50.
4. Janesick A, Blumberg B. Minireview: PPAR? as the target of obesogens. J Steroid Biochem Mol Biol. 2011;127(1-2):4-8.
5. Kim HK, Nelson-Dooley C, Della-Fera M, Yang JY, Zhang W, Duan J, et al. Genistein decreases food intake, body weight, and fat pad weight and causes adipose tissue apoptosis in ovariectomized female mice. J Nutr. 2006;136(2):409-14.
6. Wu J, Oka J, Tabata I, Higuchi M, Toda T, Fuku N, et al. Effects of isoflavone and exercise on BMD and fat mass in postmenopausal Japanese women: a 1-year randomized placebo-controlled trial. J Bone Miner Res. 2006.
7. Ruhlen R, Howdeshell K, Mao J, Taylor J, Bronson F, Newbold R, et al. Low phytoestrogen levels in feed increase fetal serum estradiol resulting in the “fetal estrogenization syndrome” and obesity in CD-1 mice. Environ Health Perspect. 2008;116;3:322-8.
8. Domazet SL, Grontved A, Timmermann AG, Nielsen F, Jensen TK. Longitudinal associations of exposure to perfluoroalkylated substances in childhood and adolescence and indicators of adiposity and glucose metabolism 6 and 12 years later: the European youth heart study. Diabetes Care. 2016;39(10):1745-51.
9. Rönn M, Lind L, Örberg J, Kullberg J, Söderberg S, Larsson A, et al. Bisphenol A is related to circulating levels of adiponectin, leptin and ghrelin, but not to fat mass or fat distribution in humans. Chemosphere. 2014;112:42-8.
10. Liu G, Dhana K, Furtado J, Rood J, Zong G, Liang L, et al. Perfluoroalkyl substances and changes in body weight and resting metabolic rate in response to weight-loss diets: a prospective study. PLoS Med. 2018;13;15(2):e1002502.
11. Paolella G, Burgos Aceves M, Lionetti L, Di Gregorio I, Busiello R, Lepretti M. Environmental pollutants effect on brown adipose tissue. Front Physiol. 2019;9:1-8.
12. Gore A, Chappell V, Fenton S, Flaws J, Nadal A, Prins G, et al. The endocrine society’s second scientific statement on endocrine-disrupting chemicals. Endocr Rev. 2015;36(6):E1-E150.
13. Bodin J, Stene L, Nygaard U. Can exposure to environmental chemicals increase the risk of diabetes type 1 development? Biomed Res Int. 2015;208947:19.
14. Howard S, Lee D. What is the role of human contamination by environmental chemicals in the development of type 1 diabetes? J Epidemiol Community Health. 2012;66(6):479-81.
15. Eze I, Hemkens L, Bucher H, Hoffmann B, Schindler C, Künzli N, et al. Association between ambient air pollution and diabetes mellitus in Europe and North America: systematic review and meta-analysis. Environ Health Perspect. 2015;123(5):381-9.
16. Bodin J, Bølling A, Becher R, Kuper F, Løvik M, Nygaard U. Transmaternal bisphenol an exposure accelerates diabetes type 1 development in NOD mice. Toxicol Sci. 2014;137(2):311-23.
17. Bodin J, Groeng E, Andreassen M, Dirven H, Nygaard U. Exposure to perfluoroundecanoic acid (PFUnDA) accelerates insulitis development in a mouse model of type 1 diabetes. Toxicol Reports. 2016; 29;3:664-72.
18. Grau-Pérez M, Kuo C, Spratlen M, Thayer K, Mendez M, Hamman R, et al. The association of arsenic exposure and metabolism with type 1 and type 2 diabetes in youth: the search case-control study. Diabetes Care. 2017;40(1):46-53.
19. Xu J, Huang G, Guo T. Developmental bisphenol A exposure modulates immune-related diseases. Toxics. 2016;26;4(4).
20. Dahlquist G. Can we slow the rising incidence of childhood-onset autoimmune diabetes? The overload hypothesis. Diabetologia. 2006;49(1):20-4.
21. Ahn C, Kang H, Lee J, Hong E, Jung E, Yoo Y, et al. Bisphenol A and octylphenol exacerbate type 1 diabetes mellitus by disrupting calcium homeostasis in mouse pancreas. Toxicol Lett. 2018;295:162-72.
22. Debost-Legrand A, Warembourg C, Massart C, Chevrier C, Bonvallot N, Monfort C, et al. Prenatal exposure to persistent organic pollutants and organophosphate pesticides, and markers of glucose metabolism at birth. Environ Res. 2016;146:207-17.
23. Sant K, Jacobs H, Borofski K, Moss J, Timme-Laragy A. Embryonic exposures to perfluorooctanesulfonic acid (PFOS) disrupt pancreatic organogenesis in the zebrafish, Danio rerio. Environ Pollut. 2017;220(B):807-17.
24. Sant K, Jacobs H, Xu J, Borofski K, Moss L, Moss J, et al. Assessment of toxicological perturbations and variants of pancreatic islet development in the zebrafish model. Toxics. 2016;4(3): pii: 20.
25. Bodin J, Kocbach Bølling A, Wendt A, Eliasson L, Becher R, Kuper F, et al. Exposure to bisphenol A, but not phthalates, increases spontaneous diabetes type 1 development in NOD mice. Toxicol Reports. 2015;2:99-110.
26. Sakkiah S, Wang T, Zou W, Wang Y, Pan B, Tong W, et al. Endocrine disrupting chemicals mediated through binding androgen receptor are associated with diabetes mellitus. Int J Environ Res Public Health. 2017;15(1):25.
27. Ruiz D, Becerra M, Jagai J, Ard K, Sargis R. Disparities in environmental exposures to endocrine-disrupting chemicals and diabetes risk in vulnerable populations. Diabetes Care. 2018;41(1):193-205.
28. Song Y, Chou EL, Baecker A, You NCY, Song Y, Sun Q, et al. Endocrine-disrupting chemicals, risk of type 2 diabetes, and diabetes-related metabolic traits: a systematic review and meta-analysis. J Diabetes. 2016;8(4):516-32.
29. Bi Y, Wang W, Xu M, Wang T, Lu J, Xu Y, et al. Diabetes genetic risk score modifies effect of bisphenol A exposure on deterioration in glucose metabolism. J Clin Endocrinol Metab. 2016;101(1):143-50.
Palabras Clave
disruptores endocrinos
diabetes mellitus tipo 1
diabetes mellitus tipo 2
dibutil ftalato
fitoestrógenos
obesidad
parabenos
Para citar
Sánchez, P., Zanabria, M., Latorre, S., Calvache, J., Coy, A., & Rojas, W. (2020). Disruptores endocrinos y su camino hacia el desequilibrio metabólico. Revista Colombiana De Endocrinología, Diabetes &Amp; Metabolismo, 7(1), 38–42. https://doi.org/10.53853/encr.7.1.567
Revista Colombiana de Endocrinología Diabetes y Metabolismo
Volumen 7 número 1
Favoritos
Resumen
La energía necesaria para la regulación de las funciones fisiológicas depende del equilibrio entre el aporte y el gasto energético. Un disbalance entre estas condiciones, donde se vea favorecido el consumo sobre el gasto, lleva a un incremento de la reserva, el cual, a su vez, favorece la hipertrofia e hiperplasia del tejido adiposo; en condiciones crónicas, este reservorio energético lleva a la obesidad. A través del uso de fórmulas, se ha tratado calcular la tasa metabólica basal para considerar el aporte óptimo energético y, por ende, la individualización en la prescripción de estrategias nutricionales en el paciente sano y con enfermedades crónicas no transmisibles (ECNT). Sin embargo, estas fórmulas no han sido evaluadas ni validadas para todas las poblaciones y menos en obesidad, que es, de forma coincidente, la población donde más se usan en la práctica clínica, además del poco conocimiento en medicina y la mayor aplicación por nutrición. El propósito de este artículo es revisar los elementos que constituyen las fórmulas de cálculo de la tasa metabólica basal (TMB) y la población de estudio para evidenciar la usabilidad de estas fórmulas en la práctica clínica en pacientes sanos y con ECNT, como la obesidad y diabetes mellitus, dada la importancia que esto representa en el contexto del balance energético.
Referencias
1. Chooi YC, Ding C, Magkos F. The epidemiology of obesity. Metabolism [Internet]. 2019;92:6–10.
2. Seravalle G, Grassi G. Obesity and hypertension. Pharmacol Res. 2017;122:1–7.
3. Klop B, Elte JWF, Cabezas MC. Dyslipidemia in Obesity: Mechanisms and Potential Targets. Nutrients. 2013;5(4):1218–40.
4. Boles A, Kandimalla R, Reddy PH. Dynamics of diabetes and obesity: Epidemiological perspective. Biochim Biophys Acta - Mol Basis Dis [Internet]. 2017;1863(5):1026–36.
5. Ortega-Loubon C, Fernández-Molina M, Singh G, Correa R. Obesity and its cardiovascular effects. Diabetes Metab Res Rev. 2019;35(4).
6. Francisco V, Pérez T, Pino J, López V, Franco E, Alonso A, et al. Biomechanics, obesity, and osteoarthritis. The role of adipokines: When the levee breaks. J Orthop Res. 2018;36(2):594–604.
7. Ackerman SE, Blackburn OA, Marchildon F, Cohen P. Insights into the Link Between Obesity and Cancer. Curr Obes Rep. 2017;6(2):195–203.
8. Gouma PI, Alkhader M, Stana?evi? M. Metabolic rate monitoring and weight reduction/management. 2014 36th Annu Int Conf IEEE Eng Med Biol Soc EMBC 2014. 2014;3184–7.
9. Doros R, Delcea A, Mardar L, Petcu L. Basal metabolic rate in metabolic disorders. Medicine (Baltimore). 2015;17(2):137–43.
10. Pavlidou E, Petridis D, Tolia M, Tsoukalas N, Poultsidi A, Fasoulas A, et al. Estimating the agreement between the metabolic rate calculated from prediction equations and from a portable indirect calorimetry device: An effort to develop a new equation for predicting resting metabolic rate. Nutr Metab. 2018;15(1):1–9.
11. Weyer C, Snitker S, Rising R, Bogardus C, Ravussin E. Determinants of energy expenditure and fuel utilization in man: Effects of body composition, age, sex, ethnicity and glucose tolerance in 916 subjects. Int J Obes. 1999;23(7):715-22.
12. Gropper S SJ. Advanced nutrition and human metabolism. Biochemical Education. 2013.
13. Ainsworth BE, Haskell WL, Leon AS, Jacobs DR, Montoye HJ, Sallis JF, et al. Compendium of physical activities: classification of energy costs of human physical activities. Med Sci Sports Exerc. 1993;25(1):71-80.
14. Wang Z, Heshka S, Gallagher D, Boozer CN, Kotler DP, Heymsfield SB. Resting energy expenditure-fat-free mass relationship: new insights provided by body composition modeling. Am J Physiol Metab. 2017;279(3):E539–45.
15. Lazzer S, Bedogni G, Lafortuna CL, Marazzi N, Busti C, Galli R, et al. Relationship between basal metabolic rate, gender, age, and body composition in 8,780 white obese subjects. Obesity. 2010;18(1):71-8.
16. Choe SS, Huh JY, Hwang IJ, Kim JI, Kim JB. Adipose tissue remodeling: Its role in energy metabolism and metabolic disorders. Front Endocrinol (Lausanne). 2016;7(APR):1–16.
17. Harris JA, Benedict FG. A Biometric Study of Human Basal Metabolism. Proc Natl Acad Sci U S A. 1918;4(12):370-3.
18. Roza AM, Shizgal HM. The Harris Benedict equation reevaluated: Resting energy requirements and the body cell mass. Am J Clin Nutr. 1984;40(1):168-82.
19. Schofield WN. Predicting basal metabolic rate, new standards and review of previous work. Hum Nutr Clin Nutr. 1985;39(1):5-41.
20. Owen OE. Resting Metabolic Requirements of Men and Women. Mayo Clinic Proceedings. 1988;63(5):503-10.
21. Livesey G. Energy and protein requirements the 1985 report of the 1981 Joint FAO/WHO/UNU Expert Consultation. Nutr Bull. 1987.
22. Mifflin MD, St Jeor ST, Hill LA, Scott BJ, Daugherty SA, Koh YO. A new predictive equation for resting energy expenditure in healthy individuals. Am J Clin Nutr. 1990;51(2):241-7.
23. Harrington ME., St. Jeor ST. SL. Predicting resting energy expenditure from body mass index: practical applications and limitations: annual conference proceedings, North American Association for the Study of Obesity. J Obes Res. 1997;5.
24. Quenouille MH, Boyne AW, Fisher WB LI. Statistical Studies of Recorded Energy Expenditure of Man. Basal Metabolism Related to Sex, Stature, Age, Climate, and Race. Commonw Bur Anim Nutr. 1951;17.
25. Henry CJ, Rees DG. New predictive equations for the estimation of basal metabolic rate in tropical peoples. Eur J Clin Nutr. 1991;45(4):177-85.
26. Piers LS, Diffey B, Soares MJ, Frandsen SL, McCormack LM, Lutschini MJ, et al. The validity of predicting the basal metabolic rate of young Australian men and women. Eur J Clin Nutr. 1997;51(5):333-7.
27. Wahrlich V, Anjos LA. Validação de equações de predição da taxa metabólica basal em mulheres residentes em Porto Alegre, RS, Brasil. Rev Saude Publica. 2001;35(1):39-45.
28. Henry CJK. Basal metabolic rate studies in humans?: measurement and development of new equations. Public Health Nutr. 2005;8:1133–52.
29. Frankenfield DC, Muth ER, Rowe WA. The Harris-Benedict studies of human basal metabolism: History and limitations. J Am Diet Assoc. 1998;98(4):439–45.
30. Gougeon R, Lamarche M, Yale JF, Venuta T. The prediction of resting energy expenditure in type 2 diabetes mellitus is improved by factoring for glycemia. Int J Obes. 2002;26(12):1547–52.
31. Huang KC, Kormas N, Steinbeck K, Loughnan G, Caterson ID. Resting metabolic rate in severely obese diabetic and nondiabetic subjects. Obes Res. 2004;12(5):840–5.
32. Rodrigues AE, Mancini MC, Dalcanale L, Melo ME de, Cercato C, Halpern A. Characterization of metabolic resting rate and proposal of a new equation for a female Brazilian population. Arq Bras Endocrinol Metabol. 2010;54(5):470–6.
33. Achamrah N, Jésus P, Grigioni S, Rimbert A, Petit A, Déchelotte P, et al. Validity of predictive equations for resting energy expenditure developed for obese patients: Impact of body composition method. Nutrients. 2018;10(1):1–11.
34. Dulloo AG, Jacquet J, Solinas G, Montani JP, Schutz Y. Body composition phenotypes in pathways to obesity and the metabolic syndrome. Int J Obes. 2010;34(2):S4-17.
35. Do R, Bailey SD, Desbiens K, Belisle A, Montpetit A, Bouchard C, et al. Genetic variants of FTO influence adiposity, insulin sensitivity, leptin levels, and resting metabolic rate in the Quebec family study. Diabetes. 2008;57(4):1147-50.
36. Loos RJF, Ruchat S, Rankinen T, Tremblay A, Pérusse L, Bouchard C. Adiponectin and adiponectin receptor gene variants in relation to resting metabolic rate, respiratory quotient, and adiposity-related phenotypes in the Quebec Family Study. Am J Clin Nutr. 2007;85(1):26-34.
37. Lara-Castro C, Luo N, Wallace P, Klein RL, Garvey WT. Adiponectin multimeric complexes and the metabolic syndrome trait cluster. Diabetes. 2006;
38. Moradi S, Mirzaei K, Abdurahman AA, Keshavarz SA, Hossein-nezhad A. Mediatory effect of circulating vaspin on resting metabolic rate in obese individuals. Eur J Nutr. 2016;
39. Ansar H, Mirzaei K, Malek A, Najmafshar A, Hossein-Nezhad A. Possible resting metabolic rate modification by the circulating RBP4 in obese subjects. Diabetes Metab Syndr Clin Res Rev. 2015;
40. Yang R-Z, Lee M-J, Hu H, Pray J, Wu H-B, Hansen BC, et al. Identification of omentin as a novel depot-specific adipokine in human adipose tissue: possible role in modulating insulin action. Am J Physiol Metab. 2006;55(1):249-59.
41. Farnaz Sepandar, Elaheh Rashidbeydi, Zhila Maghnooli, Leila KhorramiNezhad, Massomeh Hajizadehoghaz KM. The association between resting metabolic rate and metabolic syndrome may be mediated by adipokines in overweight and obese women. Diabetes Metab Syndr Clin Res Rev. 2019;13:530–4.
42. Katie R. Hirsch, Abbie E. Smith-Ryan, Malia N.M. Blue, Meredith G. Mock and ETT. Influence of Segmental Body Composition and Adiposity Hormones on Resting Metabolic Rate and Substrate Utilization in Overweight and Obese Adults. J Endocrinol Invest. 2017;40(6):635–43.
43. Sabounchi NS, Rahmandad H, Ammerman A. Best-fitting prediction equations for basal metabolic rate: Informing obesity interventions in diverse populations. Int J Obes. 2013;37(10):1364–70.
44. Wang Z, Ying Z, Bosy-Westphal A, Zhang J, Heller M, Later W, et al. Evaluation of specific metabolic rates of major organs and tissues: Comparison between nonobese and obese women. Am J Hum Biol. 2011;23(3):333–8.
45. Anthanont P, Jensen MD. Does basal metabolic rate predict weight gain? Am J Clin Nutr. 2016;104(4):959–63.
46. Tataranni PA, Harper IT, Snitker S, Del Parigi A, Vozarova B, Bunt J, et al. Body weight gain in free-living Pima Indians: Effect of energy intake vs expenditue. Int J Obes. 2003;
47. Ravussin E, Lillioja S, Knowler WC, Christin L, Freymond D, Abbott WGH, et al. Reduced Rate of Energy Expenditure as a Risk Factor for Body-Weight Gain. N Engl J Med. 1988;318(8):467-72.
48. Buscemi S, Verga S, Caimi G, Cerasola G. Low relative resting metabolic rate and body weight gain in adult Caucasian Italians. Int J Obes. 2005;29(3):287-91.
49. Bray G. Effect of caloric restriction on energy expenditure in obese patients. Lancet. 1969;2(7617):397-8.
50. de Figueiredo Ferreira M, Detrano F, Coelho GM de O, Barros ME, Serrão Lanzillotti R, Firmino Nogueira Neto J, et al. Body Composition and Basal Metabolic Rate in Women with Type 2 Diabetes Mellitus. J Nutr Metab. 2014;1–9.
51. Kien CL, Ugrasbul F. Prediction of daily energy expenditure during a feeding trial using measurements of resting energy expenditure, fat-free mass, or Harris-Benedict equations. Am J Clin Nutr. 2004;80(4):876-80.
52. Christensen RAG, Raiber L, Wharton S, Rotondi MA, Kuk JL. The associations of resting metabolic rate with chronic conditions and weight loss. Clin Obes. 2017;7(2):70–6.
53. Miller S, Milliron BJ, Woolf K. Common prediction equations overestimate measured resting metabolic rate in young hispanic women. Topics in Clinical Nutrition. 2013;28(2):120-35.
54. Payne PR, Waterlow JC. Relative energy requirements for maintenance, growth, and physical activity. The Lancet. 1971;2(7717):210-1.
55. Tredget EE, Yu YM. The metabolic effects of thermal injury. World J Surg. 1992;16(1):68-79.
56. Consoli A, Nurjhan N, Capani F, Gerich J. Predominant role of gluconeogenesis in increased hepatic glucose production in NIDDM. Diabetes. 1989;38(5):550-7.
57. Sampath Kumar A, Arun Maiya G, Shastry BA, Vaishali K, Maiya S, Umakanth S. Correlation between basal metabolic rate, visceral fat and insulin resistance among type 2 diabetes mellitus with peripheral neuropathy. Diabetes Metab Syndr Clin Res Rev. 2019;13(1):344–8.
58. De Oliveira EP, Orsatti FL, Teixeira O, Maestá N, Burini RC. Comparison of predictive equations for resting energy expenditure in overweight and obese adults. J Obes. 2011;534714.
Palabras Clave
metabolismo basal
metabolismo energético
obesidad
hipertensión
diabetes mellitus
Para citar
Sánchez, P. E., Polanco, J. P., & Rosero, R. J. (2020). Tasa metabólica basal ¿una medición sin fundamento adecuado?. Revista Colombiana De Endocrinología, Diabetes &Amp; Metabolismo, 7(1), 30–36. https://doi.org/10.53853/encr.7.1.565
Revista Colombiana de Endocrinología Diabetes y Metabolismo
Volumen 7 número 1
Favoritos
Resumen
Diversos genes pueden desencadenar la diabetes mellitus gestacional (DMG), considerada como un problema de salud pública de etiología compleja y multifactorial.
Objetivo: presentar una revisión de tema de la evidencia científica disponible sobre el impacto de la expresión de los genes omentina-1, quemerina y miR-1013p, implicados en el desarrollo de la DMG.
Materiales y métodos: se realizó una búsqueda de estudios electrónicos transversales a través de la base de datos registrados en MEDLINE y PUBMED, publicados durante 2010-2019, que valoraran mediciones de los tres genes en mujeres con DMG.
Resultados: ocho artículos cumplieron con los criterios de inclusión, cuatro artículos midieron los niveles de quemerina, tres de omentina-1 y uno de miR-103p. Entre los niveles de quemerina se mostró que la circulación de quemerina y miR103p se correlacionó positivamente con las variables metabólicas durante el primer y tercer trimestre del embarazo. Se demostró que la liberación de omentina-1 fue mayor en el tejido adiposo vs. placenta cuando se presenta obesidad.
Conclusión: la expresión de genes y la presencia de obesidad están relacionados con el desarrollo de la diabetes mellitus gestacional.
Referencias
1. Flores L, Solorio I, Melo M, Trejo J. Embarazo y obesidad: riesgo para desarrollo de diabetes gestacional en la frontera norte de México. Gac Méd Méx. 2014;150,73-8.
2. Farias J, Pérez C, Saavedra D. Diabetes mellitus gestacional: una aproximación a los conceptos actuales sobre estrategias diagnósticas. Rev Fac Med. 2016;64(4):769-75.
3. Zárate A, Saucedo R, Basurto L, Hernández M. El nuevo enfoque hacia la diabetes gestacional. Rev Med Inst Mex Seguro Soc. 2011;49(1):1-3.
4. Bakris G, Blonde L, Boulton A. Standards of medical care in diabetes. 2018. J Clin Appl Res Educ. 2018;41(1):S1-159.
5. Arroyo L, Burbaro J. Diabetes y pie diabético: una problemática mundial abordada desde la fisioterapia. Rev Colomb Endocrinol Diabetes y Metab. 2019;6(3):199-208.
6. Márquez G. Consenso Latinoamericano de Diabetes y Embarazo. Asoc Latinoam Diabetes. 2007;1-14.
7. Instituto Nacional de Salud Pública. Encuesta nacional de salud y nutrición de medio camino 2016. Informe Final de Resultados. 2016.
8. Gastaldelli A, Gaggini M, De Defronzo R. Role of adipose tissue insulin resistance in the natural history of type 2 diabetes: results from the San Antonio metabolism study. Diabetes. 2017;66:815-22.
9. Atégbo M, Grissa A, Hichami K, Dramane L, Mountairou K, Miled A, et al. Modulation of adipokines and cytokines in gestational diabetes and macrosomia. J Clin Endocrinol Metab. 2006;91(10):4137-43.
10. Roll J, González N. Diabetes y obesidad: estudio en un área de salud. Rev Cubana Med Gen Integr. 2005;21,5-6.
11. de Gennaro G, Palla G, Battini L, Simoncini T, Prato S, Bertolotto A, et al. The role of adipokines in the pathogenesis of gestational diabetes mellitus. Gynecol Endocrinol. 2019;35(9):737-51.
12. Jayabalan N, Nair S, Nuzhat Z, Rice G, Zuñiga F, Lappas M. Cross talk between adipose tissue and placenta in obese and gestational diabetes mellitus pregnancies via exosomes. Front Endocrinol (Lausanne). 2017;8:239.
13. Benton M, Danielson K, Jones A, Macartney D, Das S, Ziegler O, et al. miRNA signatures of insulin resistance in obesity. Obesity. 2017;25(10):1734-44.
14. Samad F, Yamamoto K, Pandey M, Loskutoff D. Elevated expression of transforming growth factor- 3 in adipose tissue from obese mice. Mol Med. 1997;3(1):37-48.
15. Saleh J, Wahab R, Farhan H, Al-amri I, Cianflone K. Plasma levels of acylation-stimulating protein are strongly predicted by waist/hip ratio and correlate with decreased LDL size in men. ISRN Obes. 2013;(2013):1-6.
16. Goralski K, McCarthy T, Hanniman E, Zabel B, Parlee S, Muruganandan S, et al. Chemerin, a novel adipokine that regulates adipogenesis and adipocyte metabolism. J Biol Chem. 2007;282(38):28175-88.
17. Arana J, Carbó R, Hernández A, Sánchez F, Espinosa R. Omentina: papel en la resistencia a la insulina, inflamación y protección cardiovascular. Arch Cardiol Méx. 2015;86(3):233-43.
18. González F, Chávez A, Ramírez M, Pérez E, Moreno J, Saucedo M, et al. Quemerina en síndrome metabólico. El Residente. 2015;10(3):125-31.
19. van Poppel M, Ulrich D, Schest E, Hirschmugl B, Lang U, Wadsack C, et al. Cord blood chemerin: differential effects of gestational diabetes mellitus and maternal obesity. Endocrinol Clin. 2013;80(1)65-72.
20. Zarini GG, Exebio JC, Gundupalli D, Nath S, Huffman FG. Hypertension, poor glycemic control, and microalbuminuria in Cuban Americans with type 2 diabetes. Int J Nephrol Renovasc Dis. 2011;(4):35-40.
21. Sanchez J, López D, Pinzón A, Sepúlveda A. Adipocinas y síndrome metabólico: múltiples facetas de un proceso fisiopatológico complejo. Rev Colomb Cardiol. 2010;17(4):167-76.
22. De Souza C, Yang R, Lee M, Glynn N, Yu D, Pray J, et al. Omentin plasma levels and gene expression are decreased in obesity. Diabetes. 2007;56(6):1655-61.
23. Bork-Jensen B, Baun A, Bang-Bertelsen C, Grunnet L, Pociot F, Beck-Nielsen H, et al. Genetic versus non-genetic regulation of miR-103, miR-143 and miR-483-3p expression in adipose tissue and their metabolic implications - A twin study. Genes (Basel). 2014;5(3):508-17.
24. Pfau D, Fasshauer M, Stepan H, Drynda K, Lössner U, Verlohren M, et al. Circulating levels of the adipokine chemerin in gestational diabetes mellitus. Horm Res Paediatr. 2010;74(1):56-61.
25. Yang X, Quan X, Lan Y, Ye J, Wei Q, Yin X, et al. Serum chemerin level during the first trimester of pregnancy and the risk of gestational diabetes mellitus. Gynecol Endocrinol. 2017;33(10):770-3.
26. Cheon D, Kang J, Lee S, Ihm S, Lee E, Choi M, et al. Serum chemerin levels are associated with visceral adiposity, independent of waist circumference, in newly diagnosed type 2 diabetic subjects. Yonsei Med J. 2017;58(2):319-25.
27. Panayoula C, Panagiotis H, Konstantinos P, Eirini M, George S, Sotirios A, et al. Circulating adipokines and mRNA expression in adipose tissue and the placenta in women with gestational diabetes mellitus. Peptides. 2018;101:157-66.
28. Barker G, Lim R, Georgiou HM, Lappas M. Omentin-1 is decreased in maternal plasma, placenta and adipose tissue of women with pre-existing obesity. PLoS One. 2012;7(8):1-8.
29. Abell SK, Shorakae S, Harrison C, Hiam D, Moreno A, Stepto N, et al. The association between dysregulated adipocytokines in early pregnancy and development of gestational diabetes. Diabetes Metab Res Rev. 2017;33(8):1-20.
30. Abell SK, Teede H, Boyle J, Stepto N, De Courten B, Harrison CL, et al. Role of serum biomarkers to optimise a validated clinical risk prediction tool for gestational diabetes. Aust New Zeal J Obstet Gynaecol. 2019;59(2):251-7.
31. Carreras-Badosa G, Bonmatí A, Ortega F, Mercader J, Guindo M, Torrents D, et al. Altered circulating miRNA expression profile in pregestational and gestational obesity. J Clin Endocrinol Metab. 2015;100(11):E1446-56.
32. Moher, D. Preferred Reporting Items for Systematic Reviews and MetaAnalyses: The PRISMA. Annals of Internal Medicine. 2009;151(4), 264. doi: 10.7326 / 0003-4819-151-4-200908180-00135.
33. El-Mesallamy HO, El-Derany MO, Hamdy NM. Serum omentin-1 and chemerin levels are interrelated in patients with type 2 diabetes mellitus with or without ischaemic heart disease. Diabet Med. 2011;28:1194-200.
34. American Diabetes Association. Classification and diagnosis of diabetes: standards of medical care in diabetes -2019. Diabetes Care. 2019;42(1):13-28.
35. Almeida E, Sabino C, Galváo I, Silva A, Grande I. Razón entre grasa visceral y subcutánea como predictor de alteraciones cardiometabólicas. Rev Chil Nut. 2018;45(1):28-36.
36. Tan B, Adya R, Farhatullah S, Lewandowski K, Hare P, Lehnert H, et al. Omentin-1, a novel adipokine, is decreased in overweight insulin-resistant women with polycystic ovary syndrome. Diabetes. 2008;57:801-8.
37. Coelho M, Oliveira T, Fernandes R. State of the art paper biochemistry of adipose tissue: an endocrine organ. Arch Med Sci. 2013.
38. Bozaoglu K, Curran J, Stocker C, Zaibi M, Segal D, Konstantopoulos N, et al. Chemerin, a novel adipokine in the regulation of angiogenesis. J Clin Endocrinol Metab. 2010;95(5):2476-85.
39. Álvarez G, Delgado J. Diseño de estudios epidemiológicos. I. El estudio transversal: tomando una fotografía de la salud y la enfermedad. Bol Clin Hosp Infant Edo Son. 2015;32(1):26-34.
40. International Association of Diabetes and Pregnancy Study Groups Consensus Panel. International Association of Diabetes Pregnancy study Groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy. Diabetes Care. 2010;33(3):662-82.
41. Hulley S, Cummings S, Browner W, Grady D, Newman T. Delineando a pesquisa clínica. 4a edición. Porto Alegre: Artmed. 2015.
42. Martínez D. Qualis periódicos: el sistema brasileño de evaluación de revistas. Anuario ThinkEPI. 2019,13:1-12.
Palabras Clave
Diabetes gestacional
genes
obesidad
tejido adiposo
glucosa
Para citar
Sosa García, B. C., Mendieta Zerón, H., Hinojosa Suárez, A. C., & García, M. C. (2020). Quemerina, omentina-1 y miR-103p y su relación con la diabetes mellitus gestacional. Revista Colombiana De Endocrinología, Diabetes &Amp; Metabolismo, 7(1), 20–28. https://doi.org/10.53853/encr.7.1.564
Revista Colombiana de Endocrinología Diabetes y Metabolismo
Volumen 7 número 1
Favoritos
Resumen
La deficiencia de vitamina D es considerado un problema de salud pública. Aunque algunos estudios han evaluado la deficiencia de vitamina D en poblaciones de riesgo (adultos mayores, posmenopáusicas), existen pocos datos en población adulta joven y mucho menos en poblaciones latinoamericanas. Se realizó un estudio de corte transversal con 205 universitarios entre 18 y 45 años en 2 ciudades colombianas para establecer la prevalencia y los factores asociados con la deficiencia de vitamina D. Se consideró como deficiencia de vitamina D un valor menor o igual de 20 ng/mL de 25-hidroxivitamina-D. Se estableció una prevalencia de deficiencia de vitamina D del 22,4 % (IC 95 % 17- 29). Se encontró que el género masculino y fototipo Fitzpatrick IV se asociaron de manera independiente con mayor riesgo de deficiencia de vitamina D, mientras el consumo de pescado y la exposición al sol de miembros inferiores al hacer ejercicio lo disminuyeron.
Referencias
1. Yu S, Fang H, Han J, Cheng X, Xia L, Li S, et al. The high prevalence of hypovitaminosis D in China: a multicenter vitamin D status survey. Medicine (Baltimore). 2015;94(8):e585.
2. Kumar R. Vitamin D and calcium transport. Kidney Int. 1991;40(6):1177-89.
3. Holick MF. Resurrection of vitamin D deficiency and rickets. J Clin Invest. 2006;116(8):2062-72.
4. Bhan A, Rao AD, Rao DS. Osteomalacia as a result of vitamin D deficiency. Endocrinol Metab Clin North Am. 2010;39(2):321-31.
5. Bell TD, Demay MB, Burnett-Bowie SA. The biology and pathology of vitamin D control in bone. J Cell Biochem. 2010;111(1):7-13.
6. Holick MF. Vitamin D deficiency. N Engl J Med. 2007;357(3):266-81.
7. Palacios C, Gonzalez L. Is vitamin D deficiency a major global public health problem? J Steroid Biochem Mol Biol. 2014;144:138-45.
8. van Schoor NM, Lips P. Worldwide vitamin D status. Best Pract Res Clin Endocrinol Metab. 2011;25(4):671-80.
9. Wahl DA, Cooper C, Ebeling PR, Eggersdorfer M, Hilger J, Hoffmann K, et al. A global representation of vitamin D status in healthy populations. Arch Osteoporos. 2012;7:155-72.
10. Zerwekh JE. Blood biomarkers of vitamin D status. Am J Clin Nutr. 2008;87(4):1087s-91s.
11. Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, et al. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society Clinical Practice guideline. J Clin Endocrinol Metab. 2011;96(7):1911-30.
12. Gordon CM, DePeter KC, Feldman HA, Grace E, Emans SJ. Prevalence of vitamin D deficiency among healthy adolescents. Arch Pediatr Adolesc Med. 2004;158(6):531-7.
13. Fitzpatrick TB. The validity and practicality of sun-reactive skin types I through VI. Arch Dermatol. 1988;124:869-71.
14. Sánchez G, Nova J. Confiabilidad y reproducibilidad de la escala de fototipos de Fitzpatrick antes y después de un ejercicio de estandarización clínica. Biomedica. 2008;28:544-50.
15. Hamilton LC. Stata Bookstore: statistics with stata: version 12. 8ª edición. Editorial Cengage. 2013.
16. Lemeshow S, Hosmer DW, Jr. A review of goodness of fit statistics for use in the development of logistic regression models. Am J Epidemiol. 1982;115(1):92-106.
17. Friis RH, Sellers TA. Epidemiology for public health practice. 4ª edición. Sudbury, Mass: Jones and Bartlett Publishers; 2009. p. 717.
18. González Devia D, Zúñiga Libreros C, Kattah Calderón W. Vitamin D insufficiency in adults patients with low bone mass and osteoporosis in the Fundación Santa Fe de Bogotá 2008-2009. Rev Colomb Reumatol. 2010;17(4):212-8.
19. Calatayud M, Jodar E, Sanchez R, Guadalix S, Hawkins F. Prevalence of deficient and insufficient vitamin D levels in a young healthy population. Endocrinol Nutr. 2009;56(4):164-9.
20. Mitchell DM, Henao MP, Finkelstein JS, Burnett-Bowie SA. Prevalence and predictors of vitamin D deficiency in healthy adults. Endocr Pract. 2012;18(6):914-23.
21. Harris SS. Vitamin D and African Americans. J Nutr. 2006;136(4):1126-9.
22. Joh HK, Lim CS, Cho B. Lifestyle and Dietary Factors Associated with Serum 25-Hydroxyvitamin D Levels in Korean Young Adults. J Korean Med Sci. 2015;30(8):1110-20.
23. Vannucchi E, Weingarten Berezovsky M, Masson L, Cortés Y, Sifontes Y, Bourges H. Propuesta de armonización de los valores de referencia para etiquetado nutricional en Latinoamérica (VRN-LA). ALAN. 2011;61(4):347-52.
Palabras Clave
vitamina D
deficiencia de vitamina D
estudios transversales
prevalencia
adulto joven
Para citar
Daza, A. M., Casanova, M. E., Rojas, N. A., Triana, O. J., & Ocampo, M. B. (2020). Prevalencia y factores asociados con deficiencia de vitamina D en una población adulta joven de dos instituciones de educación superior en Cali y Bogotá: estudio de corte transversal. Revista Colombiana De Endocrinología, Diabetes &Amp; Metabolismo, 7(1), 12–18. https://doi.org/10.53853/encr.7.1.563