Resumen
Introducción: La diabetes mellitus tipo 2 (DM2) es un problema sanitario importante en la actualidad, con alta morbilidad, mortalidad, costos directos e indirectos. Nuevas estrategias de manejo se han implementado para disminuir su impacto. Este estudio describe la experiencia del manejo con análogos GLP-1.
Métodos: Estudio retrospectivo, descriptivo, de pacientes con diagnóstico de DM2 en manejo con análogos GLP-1. Se describieron características clínicas al inicio de la terapia y control entre 3 -y 6 meses.
Resultados: De 69 pacientes, 55,1% eran mujeres, con edad promedio 57,1 años. La mediana de duración de DM2 fue 13 años. Se encontró reducción significativa del peso 3 kg (p=0,00), HbA1c 1,7% (p=0), glucemia en ayunas 41 mg/dL (p=0), colesterol total 14 mg/dL (p=0,0069) y triglicéridos 38 mg/dL (p=0,0247). No se presentaron cambios significativos en la tensión arterial, colesterol HDL y LDL.
Conclusión: Los análogos GLP-1 en pacientes con DM2 generan mejoría significativa en control glucémico, peso y colesterol. Es necesario un seguimiento a largo plazo para determinar mantenimiento del control glucémico, pérdida de peso e impacto en el riesgo cardiovascular.
Referencias
1. Tamayo, DC. Diabetes en Colombia, descripción de la epidemiología actual. Observatorio de diabetes de Colombia, 2013;1–11.
2. UK Prospective Diabetes Study (UKPDS) Group. (1998). lntensive blood- glucose control with sulphonylureas or insulin compared with conventional treatment and risk of camplications in patients with type 2 diabetes (UKPDS 33). The Lancet, 1998; 352: 837-853.
3. ADVANCE Collaborative Group (2008). Intensive Blood Glucose Control and Vascular Outcomes in Patients with Type 2 Diabetes. N Engl J Med. 2008; (358), 2560- 2572.
4. William Duckworth, Carlos Abraira, Thomas Moritz, Domenic Reda, Nicholas Emanuele, Peter D. Reaven, et al. Glucose Control and Vascular Complications in Veterans with Type 2 Diabetes. N Engl J Med. 2009; 360:129-39.
5. Buse, J, Drucker, D, Taylor K, Kim T, Walsh B, Hu H, et al. DURATION-1: ex- enatide once weekly produces sustained glycemic control and weight loss over 52 weeks. Diabetes Care. 2010; 33: 1255–1261.
6. Buse J, Nauck M, Forst T, SheZ W, Shenouda S, Heilmann C. et al. Exenatide once weekly versus liraglutide once daily in patients with type 2 diabetes (DURATION-6). A randomized open-label study. Lancet, 2013; 381: 117– 124.
7. Steven P. Marso, Gilbert H. Daniels, Kirstine Brown-Frandsen, Peter Kristensen, Johannes F.E. Mann, Michael A. Nauck, y cols. For the LEADER Steering committee on behalf of the LEADER Trial Investigators. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med. 2016; 375:311- 22.
8. Pfeffer MA, Claggett B, Diaz R, Dickstein K, Gerstein HC, Køber LV, et al. for the ELIXA Investigators. Lixisenatide in Patients with Type 2 Diabetes and Acute Coronary Syndrome. N Engl J Med, 2015; 373:2247-57.
9. Buse J, Rosenstock J, Sesti G, Schmidt W, Montanya E, Brett J. et al. Liraglutide once a day versus exenatide twice a day for type 2 diabetes: a 26-week randomised, parallel-group, multinational, open-label trial (LEAD-6). Lancet, 2009; 374: 39–47.
10. American Diabetes Association. (2016). Standards of medical care in diabetes- 2016. Diabetes care, 39 (Suppl 1), S13-S22.
11. Zimmet P, Alberti KG, Shaw J. Global and societal implications of the diabetes epidemic. Nature. 2001; 414:782-787
12. Kumar PR, Bhansali A, Ravikiran M, et al. Utility of glycated hemoglobin in diagnosing type 2 diabetes mellitus: A community-based study. J Clin Endocrinol Metab 2010; 95:2832–2835
13. Análisis de Situación de Salud, COLOMBIA 2014. MINSALUD, Bogotá, D. C., Colombia, 2014, pp: 146-148.
14. Sten Madsbad. Review of head-to-head comparisons of glucagon-like peptide-1 receptor agonists. Diabetes, Obesity and Metabolism 18: 317–332, 2016.
15. Stephen C L Gough, Bruce Bode, Vincent Woo, Helena W Rodbard, Sultan Linjawi, Pernille Poulsen et al. Efficacy and safety of a fixed-ratio combination of insulin degludec and liraglutide (IDegLira) compared with its components given alone: results of a phase 3, open-label, randomised, 26-week, treat-to-target trial in insulin-naive patients with type 2 diabetes. Lancet Diabetes Endocrinol 2014 Nov;2(11):885-93
16. C. Mathieu, H. W. Rodbard, B. Cariou, Y. Handelsman, A. Philis-Tsimikas, A. M. Ocampo Francisco, et al. A comparison of adding liraglutide versus a single daily dose of insulin aspart to insulin degludec in subjects with type 2 diabetes (BEGIN: VICTOZA ADD-ON. Diabetes, Obesity and Metabolism 16: 636–644, 2014.
17. Marcus Lind, Irl B Hirsch, Jaakko Tuomilehto, Sofia Dahlqvist, Bo Ahrén, Ole Torffvit, et al. Liraglutide in people treated for type 2 diabetes with multiple daily insulin injections: randomised clinical trial (MDI Liraglutide trial). BMJ 2015;351: h5364.
18. García de Lucas M, Olalla J, Sempere M. Liraglutida reduce biomarcadores y riesgo vascular en pacientes con diabetes mellitus tipo 2. Rev Med Chil;141(12): 1602-1604, dic. 2013.
19. Davidson JA, Orsted DD, Campos C. Efficacy and safety of liraglutide, a once- daily human glucagon-like peptide-1 analogue, in Latino/Hispanic patients with type 2 diabetes: post hoc analysis of data from four phase III trials. Diabetes, Obesity and Metabolism 18: 725–728, 2016.
20. Buse, J, Drucker, D, Taylor K, Kim T, Walsh B, Hu H, et al. DURATION-1: ex- enatide once weekly produces sustained glycemic control and weight loss over 52 weeks. Diabetes Care. 2010; 33: 1255–1261.
21. Du Q1, Wang YJ, Yang S, Zhao YY, Han P. Liraglutide for the Treatment of Type 2 Diabetes Mellitus: A Meta-analysis of Randomized Placebo-Controlled Trials. Adv Ther.2014. 31:1182–1195
22. Zachary t. Bloomgarden, Regina Dodis, Catherine m. Viscoli, Eric s. Holmboe, Silvio e. Inzucchi. Lower Baseline Glycemia Reduces Apparent Oral Agent Glucose-Lowering Efficacy. Diabetes care, volume 29, number 9, september 2006
23. Yu Mi Kang, Chang Hee Jung. Cardiovascular Effects of Glucagon-Like Peptide-1 Receptor Agonists. Endocrinol Metab 2016; 31:258-274
24. Russo G, Pintaudi B, Giorda C, Lucisano G, Nicolucci A, Cristofaro MR, et al. Age- and Gender-Related Differences in LDL-Cholesterol Management in Outpatients with Type 2 Diabetes Mellitus. Int J Endocrinol
2015;2015:957105.
Palabras Clave
análogos de GLP-1
diabetes mellitus tipo 2
incretinas
Para citar
Polanía, E. J., Guzmán, G. E., Martínez Calvache, V., Fériz, K., García, C., Tabares, A., & Pardo, N. (2018). Manejo de diabetes mellitus tipo 2 con análogos GLP-1: una experiencia real. Revista Colombiana De Endocrinología, Diabetes &Amp; Metabolismo, 5(1), 22–27. https://doi.org/10.53853/encr.5.1.338
Revista Colombiana de Endocrinología Diabetes y Metabolismo
Volumen 5 número 1
Favoritos
Resumen
La caveolina 1 es una proteína estructural que interviene en diversos procesos metabólicos. En estudios de asociación genética, el gen que la codifica CAV1 (7q31.2) se ha asociado a resistencia a la insulina, hipertensión, hipertrigliceridemia y c-HDL bajo. Sin embargo, se desconoce si variantes en CAV1 se asocian a obesidad e incremento en el riesgo cardiovascular (RCV).
Objetivo: Analizar la posible asociación entre variantes en CAV1 con el RCV en población del caribe colombiano.
Metodología: Se realizó un estudio de asociación genética con 595 adultos de Cartagena de Indias. Se hizo la genotipificación de los polimorfismos de nucleótido simple (SNPs): rs3779512, rs926198, rs10207569, rs11773845, rs7804372, rs1049337. El RCV fue definido mediante el puntaje derivado del estudio de Framingham. Para estimar la asociación entre las variables de estudio se realizó un análisis de varianza ajustado y fueron construidos árboles de regresión. Se aplicó el ajuste de Bonferroni para pruebas múltiples, donde fuera necesario.
Resultados: La variante rs1049337 se encontró asociada con el incremento del RCV (p=0,0001). Los sujetos con el genotipo TT en este locus tuvieron un mayor puntaje de RCV, +4,1 IC95% [0,8-8,0] en comparación con CC (p=0,03) y +4,3 IC95% [0,3-8,4] con CT (p=0,03). El árbol mostró que en el grupo TT (rs1049337) presentaba un mayor puntaje si los sujetos además contaban con el genotipo TT para rs3779512.
Conclusiones: Las variantes rs1049337 y rs3779512 se encuentran asociadas a incremento en el puntaje de RCV.
Referencias
1. World Health Organization. Global Atlas on Cardiovascular Disease Prevention and Control: World Health Organization; 2013.
2. Goff DC, Jr., Lloyd-Jones DM, Bennett G, Coady S, D’Agostino RB, Gibbons R, et al. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014;129(25 Suppl 2):S49-73.
3. Piepoli MF, Hoes AW, Agewall S, Albus C, Brotons C, Catapano AL, et al. 2016. European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts)Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). European heart journal. 2016;37(29):2315-81.
4. Fernando L, Pamela S, Alejandra L. Cardiovascular disease in Latin America: the growing epidemic. Progress in cardiovascular diseases. 2014;57(3):262-7.
5. World Health Organization. Global status report on noncommunicable diseases 2014. Geneva: World Health Organization; 2014. 280 p. p.
6. Amouyel P, Deverly A. [Global cardiovascular risk: definition, evaluation and management strategies. Round table no. 1. XV]. Therapie. 2000;55(4):533-9.
7. deGoma EM, Dunbar RL, Jacoby D, French B. Differences in absolute risk of cardiovascular events using risk-refinement tests: a systematic analysis of four cardiovascular risk equations. Atherosclerosis. 2013;227(1):172-7.
8. Sotos-Prieto M, Baylin A, Campos H, Qi L, Mattei J. Lifestyle Cardiovascular Risk Score, Genetic Risk Score, and Myocardial Infarction in Hispanic/Latino Adults Living in Costa Rica. Journal of the American Heart Association. 2016;5(12).
9. Humphries SE, Cooper JA, Talmud PJ, Miller GJ. Candidate gene genotypes, along with conventional risk factor assessment, improve estimation of coronary heart disease risk in healthy UK men. Clinical chemistry. 2007;53(1):8-16.
10. Morrison AC, Bare LA, Chambless LE, Ellis SG, Malloy M, Kane JP, et al. Prediction of coronary heart disease risk using a genetic risk score: the Atherosclerosis Risk in Communities Study. American journal of epidemiology. 2007;166(1):28-35.
11. Bolton JL, Stewart MC, Wilson JF, Anderson N, Price JF. Improvement in prediction of coronary heart disease risk over conventional risk factors using SNPs identified in genome-wide association studies. PloS one. 2013;8(2):e57310.
12. Beaney KE, Cooper JA, Ullah Shahid S, Ahmed W, Qamar R, Drenos F, et al. Clinical Utility of a Coronary Heart Disease Risk Prediction Gene Score in UK Healthy Middle Aged Men and in the Pakistani Population. PloS one. 2015;10(7):e0130754.
13. Companioni O, Rodriguez Esparragon F, Fernandez-Aceituno AM, Rodriguez Perez JC. [Genetic variants, cardiovascular risk and genome-wide association studies]. Revista espanola de cardiologia. 2011;64(6):509-14.
14. Mora Garcia G, Gomez Alegria C, Gomez Camargo D. Caveolin 1 (CAV1) gene polymorphisms associated to body mass index, hypertension and obesity related disorders in adults from Caribbean population. Obesity Reviews. 2016;17(Suppl. 2):5 - 20.
15. Engelman JA, Zhang XL, Lisanti MP. Sequence and detailed organization of the human caveolin-1 and -2 genes located near the D7S522 locus (7q31.1). Methylation of a CpG island in the 5’ promoter region of the caveolin-1 gene in human breast cancer cell lines. FEBS letters. 1999;448(2-3):221-30.
16. Kurzchalia TV, Dupree P, Monier S. VIP21-Caveolin, a protein of the trans- Golgi network and caveolae. FEBS letters. 1994;346(1):88-91.
17. Yamada E. The fine structure of the gall bladder epithelium of the mouse. The Journal of biophysical and biochemical cytology. 1955;1(5):445-58.
18. Liu GZ, Liang B, Lau WB, Wang Y, Zhao J, Li R, et al. High glucose/High Lipids impair vascular adiponectin function via inhibition of caveolin-1/AdipoR1 signalsome formation. Free radical biology & medicine. 2015;89:473-85.
19. Baudrand R, Goodarzi MO, Vaidya A, Underwood PC, Williams JS, Jeunemaitre X, et al. A prevalent caveolin-1 gene variant is associated with the metabolic syndrome in Caucasians and Hispanics. Metabolism: clinical and experimental. 2015;64(12):1674-81.
20. Pojoga LH, Underwood PC, Goodarzi MO, Williams JS, Adler GK, Jeunemaitre X, et al. Variants of the caveolin-1 gene: a translational investigation linking insulin resistance and hypertension. The Journal of clinical endocrinology and metabolism. 2011;96(8):E1288-92.
21. Grilo A, Fernandez ML, Beltran M, Ramirez-Lorca R, Gonzalez MA, Royo JL, et al. Genetic analysis of CAV1 gene in hypertension and metabolic syndrome. Thrombosis and haemostasis. 2006;95(4):696-701.
22. Razani B, Combs TP, Wang XB, Frank PG, Park DS, Russell RG, et al. Caveolin- 1-deficient mice are lean, resistant to diet-induced obesity, and show hypertriglyceridemia with adipocyte abnormalities. The Journal of biological chemistry. 2002;277(10):8635-47.
23. Gomez Camargo D, Camacho-Mejorado R, Gomez Alegria C, Alario Bello A, Hernandez-Tobias EA, Mora Garcia G, et al. Genetic structure of Cartagena de Indias population using hypervariable markers of Y chromosome. Open Journal of Genetics. 2015;5(1):1-20.
24. Builes JJ, Martinez B, Gomez A, Caraballo L, Espinal C, Aguirre D, et al. Y chromosome STR haplotypes in the Caribbean city of Cartagena (Colombia). Forensic science international. 2007;167(1):62-9.
25. Noguera MC, Schwegler A, Gomes V, Briceno I, Alvarez L, Uricoechea D, et al. Colombia’s racial crucible: Y chromosome evidence from six admixed communities in the Department of Bolivar. Ann Hum Biol. 2014;41(5):453-9.
26. Vergara C, Murray T, Rafaels N, Lewis R, Campbell M, Foster C, et al. African ancestry is a risk factor for asthma and high total IgE levels in African ad- mixed populations. Genetic epidemiology. 2013;37(4):393-401.
27. Alberti KG, Zimmet P, Shaw J. The metabolic syndrome--a new worldwide definition. Lancet. 2005;366(9491):1059-62.
28. James PA, Oparil S, Carter BL, Cushman WC, Dennison-Himmelfarb C, Handler J, et al. 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA : the journal of the American Medical Association. 2014;311(5):507-20.
29. D’Agostino RB, Sr., Vasan RS, Pencina MJ, Wolf PA, Cobain M, Massaro JM, et al. General cardiovascular risk profile for use in primary care: the Framing- ham Heart Study. Circulation. 2008;117(6):743-53.
30. Gregory Warnes and with contributions from Gregor Gorjanc and Friedrich Leisch and Michael Man. (2013). genetics: Population Genetics. R package version 1.3.8.1. https://CRAN.R-project.org/package=genetics.
31. Terry Therneau BAaBR. rpart: Recursive Partitioning and Regression Trees. R package version 4.1-10. https://CRAN.R-project.org/package=rpart.
32. R Core Team (2016). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.
33. Liu L, Ebana Y, Nitta JI, Takahashi Y, Miyazaki S, Tanaka T, et al. Genetic Variants Associated With Susceptibility to Atrial Fibrillation in a Japanese Population. Can J Cardiol. 2017;33(4):443-9.
34. Asker S, Taspinar M, Koyun H, Ozbay B, Arisoy A. Caveolin-1 polymorphisms in patients with severe obstructive sleep apnea. Biomarkers. 2017;22(1):77-80.
35. Zhao R, Liu K, Huang Z, Wang J, Pan Y, Huang Y, et al. Genetic Variants in Caveolin-1 and RhoA/ROCK1 Are Associated with Clear Cell Renal Cell Carcinoma Risk in a Chinese Population. PloS one. 2015;10(6):e0128771.
36. Langeberg WJ, Tahir SA, Feng Z, Kwon EM, Ostrander EA, Thompson TC, et al. Association of caveolin-1 and -2 genetic variants and post-treatment serum caveolin-1 with prostate cancer risk and outcomes. Prostate.
2010;70(9):1020-35.
37. Liu Y, Hauser MA, Akafo SK, Qin X, Miura S, Gibson JR, et al. Investigation of known genetic risk factors for primary open angle glaucoma in two populations of African ancestry. Invest Ophthalmol Vis Sci. 2013;54(9):6248-54.
38. Rong SS, Chen LJ, Leung CK, Matsushita K, Jia L, Miki A, et al. Ethnic specific association of the CAV1/CAV2 locus with primary open-angle glaucoma. Sci Rep. 2016;6:27837.
39. Wiggs JL, Kang JH, Yaspan BL, Mirel DB, Laurie C, Crenshaw A, et al. Common variants near CAV1 and CAV2 are associated with primary open-angle glaucoma in Caucasians from the USA. Hum Mol Genet. 2011;20(23):4707-13.
40. Chen YH, Lin WW, Liu CS, Hsu LS, Lin YM, Su SL. Caveolin-1 Expression Ameliorates Nephrotic Damage in a Rabbit Model of Cholesterol-Induced Hypercholesterolemia. PloS one. 2016;11(4):e0154210.
41. Roberts KE, Fallon MB, Krowka MJ, Brown RS, Trotter JF, Peter I, et al. Genetic risk factors for portopulmonary hypertension in patients with advanced liver disease. Am J Respir Crit Care Med. 2009;179(9):835-42.
42. Manetti M, Allanore Y, Saad M, Fatini C, Cohignac V, Guiducci S, et al. Evidence for caveolin-1 as a new susceptibility gene regulating tissue fibrosis in systemic sclerosis. Ann Rheum Dis. 2012;71(6):1034-41.
43. Chen S, Wang X, Wang J, Zhao Y, Wang D, Tan C, et al. Genomic variant in CAV1 increases susceptibility to coronary artery disease and myocardial infarction. Atherosclerosis. 2016;246:148-56.
44. Shyu HY, Chen MH, Hsieh YH, Shieh JC, Yen LR, Wang HW, et al. Association of eNOS and Cav-1 gene polymorphisms with susceptibility risk of large artery atherosclerotic stroke. PloS one. 2017;12(3):e0174110.
45. Kastelijn EA, van Moorsel CH, Kazemier KM, Roothaan SM, Ruven HJ, Kwak- kel-van Erp JM, et al. A genetic polymorphism in the CAV1 gene associates with the development of bronchiolitis obliterans syndrome after lung transplantation. Fibrogenesis Tissue Repair. 2011;4:24.
46. Shiroto T, Romero N, Sugiyama T, Sartoretto JL, Kalwa H, Yan Z, et al. Caveolin-1 is a critical determinant of autophagy, metabolic switching, and oxidative stress in vascular endothelium. PloS one. 2014;9(2):e87871.
47. Williams JJ, Palmer TM. Cavin-1: caveolae-dependent signalling and cardiovascular disease. Biochem Soc Trans. 2014;42(2):284-8.
Palabras Clave
caveolina 1
enfermedades cardiovasculares
polimorfismo de nucleótido simple
estudios de asociación genética
Colombia
América Latina
Para citar
Mora García, G., Ruiz Díaz, M. S., Alario Bello, Ángelo, Gómez Camargo, D., & Gómez Alegría, C. (2018). Asociación entre el gen de caveolina 1 (cav1) y el riesgo cardiovascular en adultos. Revista Colombiana De Endocrinología, Diabetes &Amp; Metabolismo, 5(1), 15–21. https://doi.org/10.53853/encr.5.1.337
Revista Colombiana de Endocrinología Diabetes y Metabolismo
Volumen 5 número 1
Favoritos
Resumen
Introducción: La folistatina es una proteína capaz de neutralizar varias hormonas de la familia del TGF-?, tales como la activina, las proteínas morfogénicas del hueso y la miostatina. Al inactivar la activina y la folistatina reduce la secreción de FSH. La folistatina se produce además de en el ovario en muchos otros tejidos, por ello se sospecha que tiene otros efectos. En ratones, la deleción genética de la folistatina se acompaña de resistencia a la insulina (RI). Sin embargo, la asociación entre la folistatina plasmática y RI medida directamente no ha sido evaluada en humanos.
Métodos: En 81 participantes entre 30 y 69 años (56% mujeres, 54% con sobrepeso, 13% con obesidad), determinamos antropometría, composición corporal, factores de riesgo cardiovascular y múltiples índices de RI: Área incremental bajo la curva de insulina, índice de sensibilidad a la insulina según Gutt, Homeostatic Model Assessment – Insulin Resistance (HOMA-IR) e insulinemia en ayuno. Un subgrupo de 21 participantes se sometió además a un clamp hiperinsulinémico-euglucémico. La folistatina y la miostatina se midieron en plasma de ayuno, empleando técnicas inmunométricas.
Resultados: La concentración promedio de folistatina fue 2.517±830 pg/mL, sin diferencia entre sexos (p=0,55). La folistatina tuvo una tendencia a correlación positiva con el porcentaje de masa magra (r=0,19, p=0,088) y negativa con el porcentaje de grasa corporal (r= -0,19, p=0,097). La folistatina no se correlacionó con índices de RI derivados de la PTOG pero sí con la captación corporal de glucosa en el clamp (r=0,42, p=0,031). No se halló asociación entre las concentraciones de folistatina y miostatina plasmáticas.
Conclusión: Los niveles de folistatina mostraron una tendencia hacia una correlación positiva con la masa muscular y negativa con adiposidad corporal. Esto concuerda con el efecto inhibitorio de la folistatina sobre la miostatina. Aunque la folistatina no correlacionó con índices indirectos de RI, sí lo hizo con la determinación directa de sensibilidad a la insulina en el clamp hiperinsulinémico-euglucémico.
Referencias
1. Hansen JS, Plomgaard P. Circulating follistatin in relation to energy metabolism. Mol Cell Endocrinol. 2016;433:87-93.
2. Hansen J, Rinnov A, Krogh-Madsen R, Fischer CP, Andreasen AS, Berg RM, Møller K, Pedersen BK, Plomgaard P. Plasma follistatin is elevated in patients with type 2 diabetes: relationship to hyperglycemia, hyperinsulinemia, and systemic low-grade inflammation. Diabetes Metab Res Rev. 2013;29:463-72.
3. Ueno N, Ling N, Ying SY, Esch F, Shimasaki S, Guillemin R. Isolation and partial characterization of follistatin: a single-chain Mr 35,000 monomeric protein that inhibits the release of follicle-stimulating hormone. Proc Natl Acad Sci USA. 1987;84:8282-6.
4. Esch FS, Shimasaki S, Mercado M, Cooksey K, Ling N, Ying S, Ueno N, Guillemin R. Structural characterization of follistatin: a novel follicle-stimulating hormone release-inhibiting polypeptide from the gonad. Mol Endocrinol. 1987;1:849-55.
5. Takamura K, Tsuchida K, Miyake H, Tashiro S, Sugino H. Possible endocrine control by follistatin 315 during liver regeneration based on changes in the activin receptor after a partial hepatectomy in rats. Hepatogastroenterology. 2005;52:60-6.
6. Bondestam J, Horelli-Kuitunen N, Hildén K, Ritvos O, Aaltonen J. Assignment of ACVR2 and ACVR2B the human activin receptor type II and IIB genes to chromosome bands 2q22.2-->q23.3 and 3p22 and the human follistatin gene (FST) to chromosome 5q11.2 by FISH. Cytogenet Cell Genet. 1999;87:219-20.
7. Harrington AE, Morris-Triggs SA, Ruotolo BT, Robinson CV, Ohnuma S, Hyvönen M. Structural basis for the inhibition of activin signalling by follistatin. EMBO J. 2006;25:1035-45.
8. Amthor H, Nicholas G, McKinnell I, Kemp CF, Sharma M, Kambadur R, Patel K.
Follistatin complexes Myostatin and antagonises Myostatin-mediated inhibition of myogenesis. Dev Biol. 2004;270:19-30.
9. Pentek J, Parker L, Wu A, Arora K. Follistatin preferentially antagonizes activin rather than BMP signaling in Drosophila. Genesis. 2009;47:261-73.
10. Shimasaki S, Koga M, Esch F, Cooksey K, Mercado M, Koba A, Ueno N, Ying SY, Ling N, Guillemin R. Primary structure of the human follistatin precursor and its genomic organization. Proc Natl Acad Sci USA. 1988;85:4218-22.
11. Lerch TF, Shimasaki S, Woodruff TK, Jardetzky TS. Structural and biophysical coupling of heparin and activin binding to follistatin isoform functions. J Biol Chem. 2007;282:15930-9.
12. Schneyer AL, Wang Q, Sidis Y, Sluss PM. Differential distribution of follistatin isoforms: application of a new FS315-specific immunoassay. J Clin Endocrinol Metab. 2004;89:5067-75.
13. Vamvini MT, Aronis KN, Chamberland JP, Mantzoros CS. Energy deprivation alters in a leptin- and cortisol-independent manner circulating levels of activin A and follistatin but not myostatin in healthy males. J Clin Endocrinol Metab. 2011;96:3416-23.
14. Hansen J, Brandt C, Nielsen AR, Hojman P, Whitham M, Febbraio MA, Pedersen BK, Plomgaard P. Exercise induces a marked increase in plasma follistatin: evidence that follistatin is a contraction-induced hepatokine. Endocrinology. 2011;152:164-71.
15. Kerschan-Schindl K, Thalmann MM, Weiss E, Tsironi M, Föger-Samwald U, Meinhart J, Skenderi K, Pietschmann P. Changes in Serum Levels of Myokines and Wnt-Antagonists after an Ultramarathon Race. PLoS One. 2015;10:e0132478.
16. Hansen JS, Rutti S, Arous C, Clemmesen JO, Secher NH, Drescher A, Gonelle- Gispert C, Halban PA, Pedersen BK, Weigert C, Bouzakri K, Plomgaard P. Circulating Follistatin Is Liver-Derived and Regulated by the Glucagon-to-Insulin Ratio. J Clin Endocrinol Metab. 2016;101:550-60.
17. Hansen JS, Pedersen BK, Xu G, Lehmann R, Weigert C, Plomgaard P. Exercise- Induced Secretion of FGF21 and Follistatin Are Blocked by Pancreatic Clamp and Impaired in Type 2 Diabetes. J Clin Endocrinol Metab. 2016;101:2816- 25.
18. DeFronzo RA, Tobin JD, Andres R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol 1979;237:E214-23
19. Mendivil CO, Robles-Osorio L, Horton ES, Hamdy O, Caballero AE. Young Hispanics at risk of type 2 diabetes display endothelial activation, subclinical inflammation and alterations of coagulation and fibrinolysis. Diabetol Metab Syndr 2013;5:37.
20. Gutt M, Davis CL, Spitzer SB, Llabre MM, Kumar M, Czarnecki EM, Schneiderman N, Skyler JS, Marks JB. Validation of the insulin sensitivity index (ISI0,120): comparison with other measures. Diabetes Res Clin Pract 2000;47:177–184.
21. Matthews JNS, Altman DG, Campbell MJ, Royston P. Analysis of serial measurements in medical research. Br Med J 1990;27:230-235.
22. Zimmers TA, Davies MV, Koniaris LG, Haynes P, Esquela AF, Tomkinson KN, McPherron AC, Wolfman NM, Lee SJ. Induction of cachexia in mice by systemically administered myostatin. Science. 2002;296:1486-8.
23. Amthor H, Christ B, Rashid-Doubell F, Kemp CF, Lang E, Patel K. Follistatin regulates bone morphogenetic protein-7 (BMP-7) activity to stimulate embryonic muscle growth. Dev Biol. 2002;243:115-27.
24. Hill JJ, Davies MV, Pearson AA, Wang JH, Hewick RM, Wolfman NM, Qiu Y. The myostatin propeptide and the follistatin-related gene are inhibitory binding proteins of myostatin in normal serum. J Biol Chem. 2002;277:40735-41.
25. Hill JJ, Qiu Y, Hewick RM, Wolfman NM. Regulation of myostatin in vivo by growth and differentiation factor-associated serum protein-1: a novel protein with protease inhibitor and follistatin domains. Mol Endocrinol. 2003;17:1144-54.
26. Näf S, Escote X, Ballesteros M, Yañez RE, Simón-Muela I, Gil P, Albaiges G, Vendrell J, Megia A. Serum activin A and follistatin levels in gestational diabetes and the association of the Activin A-Follistatin system with anthropometric parameters in offspring. PLoS One. 2014;9:e92175.
27. Teede H, Ng S, Hedger M, Moran L. Follistatin and activins in polycystic ovary syndrome: relationship to metabolic and hormonal markers. Metabolism. 2013;62:1394-400.
28. Wu H, Wu M, Chen Y, Allan CA, Phillips DJ, Hedger MP. Correlation between blood activin levels and clinical parameters of type 2 diabetes. Exp Diabetes Res. 2012;2012:410579.
Palabras Clave
folistatina
resistencia a la insulina
obesidad
adiposidad
miostatina
miocinas
TGF
Para citar
Toloza, F. J., Ricardo-Silgado, M. L., Mantilla-Rivas, J. O., Morales-Álvarez, M. C., Pérez-Matos, M. C., Pinzón-Cortés, J. A., Pérez-Mayorga, M., & Mendivil, C. O. (2018). Folistatina, resistencia a la insulina y composición corporal en adultos colombianos. Revista Colombiana De Endocrinología, Diabetes &Amp; Metabolismo, 5(1), 7–14. https://doi.org/10.53853/encr.5.1.336
Revista Colombiana de Endocrinología Diabetes y Metabolismo
Volumen 5 número 1
Favoritos
Resumen
Fragmento
Las alteraciones endocrinas en el paciente hospitalizado representan un reto desde su diagnóstico y manejo por la complejidad de la enfermedad en sí y por las múltiples variables que deben integrarse para optimizar su estabilidad fisiológica. Un aspecto fundamental que hay que considerar en el paciente hospitalizado es la homeostasis endocrina, de la que dependen un sinnúmero de vías de señalización intracelulares e intercelulares que se traducen en la sincronización de funciones metabólicas y orgánicas.
En los últimos años se han logrado avances en el conocimiento no solamente de la función endocrina, sino también de su disfunción y en la presentación de nuevas entidades endocrinológicas en el paciente internado, que no son exclusivamente una curiosidad fisiopatológica, ya que impactan en el comportamiento clínico, en el pronóstico y en la rehabilitación de este grupo especial de enfermos.
De las descripciones iniciales de la ya clásica respuesta metabólica al trauma y de las fases de flujo se ha alcanzado un elevado grado de conocimiento en el aspecto molecular y clínico de la disfunción endocrina en los enfermos hospitalizados. Por este motivo y por su gran interés en poner al día al grupo médico encargado del manejo del paciente hospitalizado, la Asociación Colombiana de Endocrinología, Diabetes y Metabolismo desarrolló un esfuerzo conjunto, bajo el liderazgo del doctor Alejandro Pinzón Tovar, para producir este libro de texto en el que se exponen los temas de más actualidad en relación a esta interesante e innovadora rama de la medicina endocrinológica, la disfunción endocrina del paciente hospitalizado.
Palabras Clave
homeostasis endocrina
alteraciones endocrinas
pacientes hospitalizados
función endocrina
Para citar
Duque Ossman, J. J. (2018). Libro Alteraciones endocrinas del paciente hospitalizado. Revista Colombiana De Endocrinología, Diabetes &Amp; Metabolismo, 5(1), 6. https://doi.org/10.53853/encr.5.1.335
Revista Colombiana de Endocrinología Diabetes y Metabolismo
Volumen 5 número 1
Favoritos
Resumen
Fragmento
Desde el aislamiento de la hormona tiroidea por Edward C. Kendall en la Clínica Mayo en 1914, a partir de un número importante de glándulas tiroides de cerdo(1), su molécula ha pasado por muchas etapas, tratando de suplir su deficiencia en los pacientes hipotiroideos.
El hipotiroidismo es una entidad de las más frecuentes en endocrinología y especialmente en los países como Colombia en los cuales se conjugaron durante mucho tiempo, además de la altura sobre el nivel del mar en ciertas regiones, la deficiencia de yodo en la dieta, factor de riesgo superado desde hace ya varios años con la administración de yodo en la sal, faltando por supuesto, seguimiento de parte de las autoridades sanitarias nacionales en relación a su concentración. En este momento, su origen está relacionado con problemas inmunológicos, como sucede en la mayoría de los países del mundo.
La hormona tiroidea es una sustancia que por su misma composición es una molécula inestable y en la cual se conjugan varios factores en ocasiones relacionados: problemas en su fabricación, bioequivalencia, eficacia de ciertos lotes e inclusive su almacenamiento, lo cual podría llevar a no suplir las necesidades de los pacientes, obligando a los fabricantes de diferentes marcas y presentación a agregar nuevos excipientes.
Referencias
1. Kendall EC The isolation in crystalline form of the compound containing iodin, which occurs in the thyroid: its chemical nature and physiologic activity. J Am Med Ass 1915. 64:2042-3.
2. J Jácome A, Terapia de suplencia tiroidea: una historia del siglo XIX que aún genera noticias en el siglo XXI. Revista Colombiana de Endocrinología, Diabetes y Metabolismo. 2018; Vol.5(1): 38-41.
3. Levothyrox: L'ANSM admet un défault d'infomation. Le Monde 2 septiembre 2017. P.11
Palabras Clave
Hipotiroidismo
hormona tiroidea
Endocrinología
Para citar
Ardila, E. (2018). El reemplazo tiroideo. Un diálogo de sordos. Revista Colombiana De Endocrinología, Diabetes &Amp; Metabolismo, 5(1), 4–5. https://doi.org/10.53853/encr.5.1.334
Revista Colombiana de Endocrinología Diabetes y Metabolismo
Volumen 5 número 1
Favoritos
Resumen
La osteomalacia tumoral (OT) es un síndrome paraneoplásico poco frecuente caracterizado por una alteración en la tasa de reabsorción del fósforo a nivel renal, causado por la producción tumoral de la proteína fosfatúrica, llamada factor de crecimiento fibroblástico 23 (FGF-23). Las manifestaciones clínicas son consecuencia de los niveles bajos de fósforo sérico que llevan a dolor musculoesquelético y fracturas por fragilidad ósea. Usualmente se trata de un tumor de origen mesenquimal de pequeño tamaño que puede ser difícil de localizar, pero en los casos en los que se logra realizar la extirpación quirúrgica del mismo, los síntomas y las anomalías bioquímicas revierten rápidamente(1).
Presentamos un caso de un paciente con un tumor de gran tamaño y una enfermedad de larga evolución, que tuvo un desenlace exitoso luego de la cirugía.
Referencias
1. William H Chong, Alfredo A Molinolo, Clara C Chen MTC. Tumor-Induced Osteomalacia. Endocr Relat Cancer. 2011;18(3):R53–77.
2. Alonso G, Varsavsky M. Osteomalacia tumoral?: un síndrome paraneoplásico emergente. Endocrinol y Nutr. SEEN; 2016;63(4):181–6.
3. Folpe AL, Fanburg-smith JC, Billings SD, Reith JD, Connell JXO, Rosenberg AE, et al. Most Osteomalacia-associated Mesenchymal Tumors Are a. Am J Surg Pathol. 2004;28(1):1–30.
4. P Andreopoulou, CM Millo, JC Reynolds, MH Kelly, BA Brillante, FM Wodajo, R Chang CC and MC. Mul- timodality Diagnosis and Treatment of Tumor-Induced Osteomalacia. Endocrine Reviews. 2010. p. (Suppl 1):OR08-6; S49.
5. Portillo MR. Nefrología al día. 2012th ed. Víctor Lorenzo JML-G, editor. Vol. 25. Madrid: Revista Nefrología; 2010. 201-219 p.
6. Nanes MS. Phosphate wasting and fibroblast growth factor-23. Curr Opin Endocrinol Diabetes Obes. 2013;20(6):523–31.
7. Hautmann AH, Hautmann MG, Kölbl O, Herr W, Fleck M. Tumor-Induced Osteomalacia: an Up-to- Date Review. Curr Rheumatol Rep. 2015;17(6).
8. Hu F, Jiang C, Zhang Q, Shi H, Wei L, Wang Y. Quantitative ELISA-Like Immunohistochemistry of Fi- broblast Growth Factor 23 in Diagnosis of Tumor- Induced Osteomalacia and Clinical Characteristics of the Disease. Dis Markers. 2016;2016.
9. http://co.prvademecum.com/producto.php?producto=9551 [Internet]. [cited 2017 Jun20]. Available from: http://co.prvademecum.com/producto.php?producto=9551
10. http://www.fagronorbus.com/productos-laboratorio-farmaceutico-magistral-colombia.html [Internet]. [cited 2017 Jun 27]. Available from: http://www.fagronorbus.com/productos-laboratorio-farmaceutico-magistral-colombia.html
Palabras Clave
osteomalacia tumoral (OT)
síndrome paraneoplásico
factor de crecimiento fibroblástico 23 (FGF-23)
Para citar
Fierro Maya, L. F., Sandoval, H., Mejía, L., Messa-Botero, Óscar, Melo-Uribe, M. A., Soto-Montoya, C., Cuellar, A. A., & Tapiero, M. (2017). Osteomalacia tumoral. Reporte de un caso y revisión de la literatura. Revista Colombiana De Endocrinología, Diabetes &Amp; Metabolismo, 4(4), 46–49. https://doi.org/10.53853/encr.4.4.152
Revista Colombiana de Endocrinología Diabetes y Metabolismo
Volumen 4 número 4
Favoritos
Resumen
La asociación entre la obesidad y la densidad mineral ósea ha sido un punto controversial al momento de establecer si existe una asociación positiva o negativa entre las mismas. Diversos estudios han propuesto que la obesidad es un factor protector del hueso, debido a la tensión mecánica dada por el peso corporal en la remodelación ósea. Otros estudios plantean que la relación es mucho más compleja debido a que el tejido adiposo y los osteoblastos provienen de líneas germinales comunes. Además, el adipocito tiene la capacidad de secretar diversas moléculas, entre ellas las adipocinas. Adicionalmente, el tejido adiposo es una de las principales fuentes de aromatasa, esto lo involucra en la conversión de andrógenos a estrógenos, que juegan un papel importante en el mantenimiento de la homeostasis ósea. Por lo tanto, se ha planteado el hueso como órgano blanco de diversas vías endocrinas y, a su vez, se considera un órgano endocrino que puede afectar otros órganos cuando está alterado. Por otra parte, se ha visto que la resistencia a la insulina en el contexto de la obesidad está asociada con inflamación crónica de bajo grado, deterioro funcional de órganos y alteración del metabolismo energético, que impacta la remodelación ósea.
Abstract
There is controversy over the effect of obesity in bone mineral density. Several studies have proposed that obesity is a protective factor of the bone by the mechanical tension that favors the bone remodeling. However, other studies suggest that this relationship is more complex because both tissues come from a common germ line; emphasizing that the adipocyte secretes diverse molecules, among them adipocinas. In addition, adipose tissue has aromatases that convert androgens into estrogens, having an importance in bone homeostasis. Therefore, the bone has been raised as a target organ of various endocrine pathways, which may affect other organs when it is altered. On the other hand, it has been shown that insulin resistance in the context of obesity is associated with chronic low-grade inflammation, functional impairment of organs and impaired energy metabolism, which impacts bone remodeling.
Referencias
1. WHO. WHO | Obesity and overweight. Who [Internet]. 2017 [cited 2017 Sep 3]; Available from: http://www.who.int/mediacentre/factsheets/fs311/en/
2. Guh DP, Zhang W, Bansback N, Amarsi Z, Birmingham CL, Anis AH. The incidence of co-morbidities related to obesity and overweight: A systematic review and meta-analysis. BMC Public Health [Internet]. 2009 Dec 25 [cited 2017 Sep 3];9(1):88. Available from: http://bmcpublichealth.biomedcentral.com/articles/10.1186/1471-2458-9-88
3. Van Der Klaauw AA, Farooqi IS. The hunger genes: Pathways to obesity. Cell [Internet]. 2015 Mar 26 [cited 2017 Sep 1];161(1):119–32. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25815990
4. Wang YC, McPherson K, Marsh T, Gortmaker SL, Brown M. Health and economic burden of the projected obesity trends in the USA and the UK. Lancet [Internet]. 2011 Aug 27 [cited 2017 Sep 1];378(9793):815–25. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21872750
5. Greco EA, Lenzi A, Migliaccio S. The obesity of bone. Ther Adv Endocrinol Metab [Internet]. 2015 Dec 19 [cited 2017 Sep 3];6(6):273–86. Available from: http://journals.sagepub.com/doi/10.1177/2042018815611004
6. Rachner TD, Khosla S, Hofbauer LC. Osteoporosis: Now and the future. Lancet. 2011;377(9773):1276–87.
7. Huber DM, Bendixen AC, Pathrose P, Srivastava S, Dienger KM, Shevde NK, et al. Androgens suppress osteoclast formation induced by RANKL and macrophage-colony stimulating factor. Endocrinology [Internet]. 2001 Sep [cited 2017 Jun 26];142(9):3800–8. Available from:
http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=11517156%5Cn
http://endo.endojournals.org/cgi/content/full/142/9/3800
http://endo.endojournals.org/cgi/content/abstract/142/9/3800
8. Luo XH, Guo LJ, Xie H, Yuan LQ, Wu XP, Zhou HD, et al. Adiponectin stimulates RANKL and inhibits OPG expression in human osteoblasts through the MAPK signaling pathway. J Bone Min Res [Internet]. 2006 Jul 17 [cited 2017 Sep 1];21(10):1648–56. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16995820
9. Vandewalle S, Taes Y, Van Helvoirt M, Debode P, Herregods N, Ernst C, et al. Bone size and bone strength are increased in obese male adolescents. J Clin Endocrinol Metab. 2013;98(7):3019–28.
10. Samuel VT, Shulman GI. Mechanisms for insulin resistance: Common threads and missing links. Cell [Internet]. 2012 Mar 2 [cited 2017 Sep 3];148(5):852–71. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22385956
11. Walsh JS. Normal bone physiology, remodelling and its hormonal regulation. Surg (United Kingdom) [Internet]. 2015 Jan 1 [cited 2017 Sep 3];33(1):1–6. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0263931914002257
12. Lecka-Czernik B, Stechschulte LA. Bone and fat: A relationship of different shades. Arch Biochem Biophys [Internet]. 2014 Nov [cited 2017 Sep 3];561:124–9. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0003986114002124
13. Wei J, Ferron M, Clarke CJ, Hannun YA, Jiang H, Blaner WS, et al. Bone- specific insulin resistance disrupts whole-body glucose homeostasis via decreased osteocalcin activation. J Clin Invest [Internet]. 2014 Apr 1 [cited 2017 Sep 3];124(4):1–13. Available from: https://www.jci.org/articles/view/72323
14. Madeira E, Mafort TT, Madeira M, Guedes EP, Moreira RO, de Mendonça LMC, et al. Lean mass as a predictor of bone density and microarchitecture in adult obese individuals with metabolic syndrome. Bone [Internet]. 2014 Feb [cited 2017 Sep 3];59:89–92. Available from: http://linkinghub.elsevier.com/retrieve/pii/S8756328213004407
15. Fulzele K, Riddle RC, DiGirolamo DJ, Cao X, Wan C, Chen D, et al. Insulin Receptor Signaling in Osteoblasts Regulates Postnatal Bone Acquisition and Body Composition. Cell [Internet]. 2010 [cited 2017 Sep 3];142(2):309– 19. Available from: http://www.sciencedirect.com/science/article/pii/S0092867410006203
16. Ferron M, Wei J, Yoshizawa T, Del Fattore A, DePinho RA, Teti A, et al. Insulin Signaling in Osteoblasts Integrates Bone Remodeling and Energy Metabolism. Cell [Internet]. 2010 Jul 23 [cited 2017 Sep 3];142(2):296–308. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20655470
17. O’Regan AW, Nau GJ, Chupp GL, Berman JS. Osteopontin (Eta-1) in cell-mediated immunity: teaching an old dog new tricks. ImmunolToday [Internet]. 2000 Oct [cited 2017 Jun 26];21(10):475–8. Available from:
http://www.sciencedirect.com/science/article/pii/S0167569900017151
18. Naot D, Cornish J. Cytokines and hormones that contribute to the positive association between fat and bone. Front Endocrinol (Lausanne) [Internet]. 2014 [cited 2017 Sep 3];5(MAY):70. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24847313
19. I.R. R. Fat and bone. Arch Biochem Biophys [Internet]. 2010 Nov 1 [cited 2017 Aug 30];503(1):20–7. Available from
http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emed9&NEWS=N&AN=2010507817
20. Sun AJ, Jing T, Heymsfield SB, Phillips GB. Relationship of leptin and sex hormones to bone mineral density in men. Acta Diabetol. 2003;40(SUPPL. 1).
21. Wong SK, Chin KY, Suhaimi FH, Ahmad F, Ima-Nirwana S. The relationship between metabolic syndrome and osteoporosis: A Review. Nutrients [Internet]. 2016 Jun 7 [cited 2017 Sep 1];8(6):347. Available from:
http://www.ncbi.nlm.nih.gov/pubmed/27338453
22. Campos RMS, Lazaretti-Castro M, Mello MT De, Tock L, Silva PL, Corgosinho FC, et al. Influence of visceral and subcutaneous fat in bone mineral density of obese adolescents. Arq Bras Endocrinol Metabol [Internet]. 2012;56(1):12–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22460190
23. Aguirre GA, De Ita JR, de la Garza RG, Castilla-Cortazar I. Insulin-like growth factor-1 deficiency and metabolic syndrome. J Transl Med [Internet]. 2016 Jan 6 [cited 2017 Sep 1];14(1):3. Available from: http://www.translational-medicine.com/content/14/1/3
24. Jensen MD, Ryan DH, Apovian CM, Ard JD, Comuzzie AG, Donato KA, et al. 2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults: A report of the American college of cardiology/ American heart association task force on practice guidelines and the obesity society. J Am Coll Cardiol [Internet]. 2014 [cited 2017 Sep 1];63(25 PART B):2985–3023. Available from: https://doi.org/10.1161/01.cir.0000437739.71477.ee jacc.2013.11.004%5Cnpapers3://publication/doi/10.1016/j. jacc.2013.11.004
25. Garvey W, Garber A, Mechanick J, Bray G, Dagogo-Jack S, Einhorn D, et al. American Association of Clinical Endocrinologists and American College of Endocrinology Position Statement on the 2014 Advanced Framework for a New Diagnosis of Obesity as a Chronic Disease. Endocr Pract [Internet].
2014 [cited 2017 Sep 1];20(9):977–89. Available from:
http://journals.aace.com/doi/abs/10.4158/EP14280.PS
26. Parikh SJ, Edelman M, Uwaifo GI, Freedman RJ, Semega-Janneh M, Reynolds J, et al. The Relationship between Obesity and Serum 1,25-Dihydroxy Vitamin D Concentrations in Healthy Adults. J Clin Endocrinol Metab [Internet]. 2004 Mar [cited 2017 Aug 30];89(3):1196–9. Available from: https://academic.oup.com/jcem/article-lookup/doi/10.1210/jc.2003-031398
27. Yao Y, Zhu L, He L, Duan Y, Liang W, Nie Z, et al. A meta-analysis of the relationship between vitamin D deficiency and obesity. Int J Clin Exp Med [Internet]. 2015 [cited 2017 Aug 30];8(9):14977–84. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26628980
28. Mallard SR, Howe AS, Houghton LA. Vitamin D status and weight loss: A systematic review and meta-analysis of randomized and nonrandomized controlled weight-loss trials. Am J Clin Nutr [Internet]. 2016 Oct 1 [cited 2017 Aug 30];104(4):1151–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27604772
29. Vanlint S. Vitamin D and obesity. Nutrients [Internet]. 2013 Mar 20 [cited 2017 Aug 30];5(3):949–56. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23519290
30. Ding C, Gao D, Wilding J, Trayhurn P, Bing C. Vitamin D signalling in adipose tissue. Br J Nutr [Internet]. 2012 Dec 9 [cited 2017 Aug 30];108(11):1915– 23. Available from: http://www.journals.cambridge.org/abstract_S0007114512003285
31. Marcotorchino J, Tourniaire F, Landrier JF. Vitamin D, adipose tissue, and obesity. Horm Mol Biol Clin Investig [Internet]. 2013 Jan 1 [cited 2017 Aug 30];15(3):123–8. Available from: https://www.degruyter.com/view/j/hmbci.2013.15.issue-3/hmbci-2013-0027/hmbci-2013-0027.xml
32. Ceglia L, Nelson J, Ware J, Alysandratos K-D, Bray GA, Garganta C, et al. Association between body weight and composition and plasma 25-hydroxyvitamin D level in the Diabetes Prevention Program. Eur J Nutr [Internet]. 2015 Feb 2 [cited 2017 Aug 30];56(1):1–10. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26525562
33. Gómez-Ambrosi J, Rodríguez A, Catalán V, Frühbeck G. The bone-adipose axis in obesity and weight loss. Obes Surg [Internet]. 2008 Sep 19 [cited 2017 Jun 26];18(9):1134–43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18563500
34. Reid IR. Relationships between fat and bone. Osteoporos Int. 2008;19(5):595–606.
35. Motyl KJ, Rosen CJ. Understanding leptin-dependent regulation of skeletal homeostasis. Biochimie [Internet]. 2012 Oct [cited 2017 Jun 26];94(10):2089–96. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22534195
36. Lago F, Dieguez C, Gómez-Reino J, Gualillo O. Adipokines as emerging mediators of immune response and inflammation. Nat Clin Pract Rheumatol [Internet]. 2007 Dec 1 [cited 2017 Sep 1];3(12):716–24. Available from: http://www.nature.com/doifinder/10.1038/ncprheum0674
37. Diamantis E, Troupis T, Farmaki P, Diamanti S, Skandalakis P. Obesity and fracture risk. Arch Hell Med [Internet]. 2016 [cited 2017 Sep 1];33(3):320– 30. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25002873
38. Berner HS, Lyngstadaas SP, Spahr A, Monjo M, Thommesen L, Drevon CA, et al. Adiponectin and its receptors are expressed in bone-forming cells. Bone [Internet]. 2004 Oct [cited 2017 Sep 1];35(4):842–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15454091
39. Williams GA, Wang Y, Callon KE, Watson M, Lin JM, Lam JBB, et al. In vitro and in vivo effects of adiponectin on bone. Endocrinology [Internet]. 2009 Aug 1 [cited 2017 Sep 1];150(8):3603–10. Available from: https://academic.oup.com/endo/article-lookup/doi/10.1210/en.2008-1639
40. Oshima K, Nampei A, Matsuda M, Iwaki M, Fukuhara A, Hashimoto J, et al. Adiponectin increases bone mass by suppressing osteoclast and activating osteoblast. Biochem Biophys Res Commun [Internet]. 2005 Jun 3 [cited 2017 Sep 1];331(2):520–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15850790
41. Dimitri P, Rosen C. The Central Nervous System and Bone Metabolism: An Evolving Story. Calcif Tissue Int [Internet]. 2017 May 8 [cited 2017 Sep 1];100(5):476–85. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27501818
42. Pascual Serrano D, Vera Pasamontes C, Girón Moreno R. Modelos animales de dolor neuropático. Vol. 31, Dolor. 2016. 70-76 p.
43. David G, Gardner D, Dolores R. Greenspan’s basic & clinical endocrinology. McGraw-Hill, New York. McGraw-Hill Medical; 2011.
44. Henning P, Ohlsson C, Engdahl C, Farman H, Windahl SH, Carlsten H, et al. The effect of estrogen on bone requires ERalpha in nonhematopoietic cells but is enhanced by ERalpha in hematopoietic cells. Am J Physiol Endocrinol Metab [Internet]. 2014 Oct 1 [cited 2017 Jun 26];307(7):E589-95. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25117411
45. Bartell SM, Han L, Kim H, Kim SH, Katzenellenbogen J a, Katzenellenbogen BS, et al. Non-nuclear-initiated actions of the estrogen receptor protect cortical bone mass. Mol Endocrinol [Internet]. 2013 Apr [cited 2017 Jun 26];27(4):649–56. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3607700&tool=pmcentrez&rendertype=abstract
46. Lim VW, Li J, Gong Y, Yuan JM, Wu TS, Hammond GL, et al. Serum free estradiol and estrogen receptor-? mediated activity are related to decreased incident hip fractures in older women. Bone [Internet]. 2012 Jun [cited 2017 Jun 26];50(6):1311–6. Available from: http://linkinghub.elsevier.com/retrieve/pii/S8756328212007247
47. Ho-Pham LT, Nguyen ND, Nguyen T V. Quantification of the relative contribution of estrogen to bone mineral density in men and women. BMC Mus- culoskelet Disord [Internet]. 2013 Dec 23 [cited 2017 Jun 26];14(1):366. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3878025&tool=pmcentrez&rendertype=abstract
48. Finigan J, Gossiel F, Glüer CC, Felsenberg D, Reid DM, Roux C, et al. Endogenous estradiol and the risk of incident fracture in postmenopausal women: The OPUS study. Calcif Tissue Int [Internet]. 2012 Jul 27 [cited 2017 Jun 26];91(1):59–68. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22644322
49. Bekaert M, Van Nieuwenhove Y, Calders P, Cuvelier CA, Batens AH, Kaufman JM, et al. Determinants of testosterone levels in human male obesity. Endocrine [Internet]. 2015 Sep 13 [cited 2017 Jun 26];50(1):202–11. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25771885
50. Polari L, Yatkin E, Martínez Chacón MG, Ahotupa M, Smeds A, Strauss L, et al. Weight gain and inflammation regulate aromatase expression in male adipose tissue, as evidenced by reporter gene activity. Mol Cell Endocrinol [Internet]. 2015 Sep 5 [cited 2017 Jun 26];412:123–30. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26054748
51. Bredella MA, Lin E, Gerweck A V., Landa MG, Thomas BJ, Torriani M, et al. Determinants of bone microarchitecture and mechanical properties in obese men. J Clin Endocrinol Metab. 2012;97(11):4115–22.
52. Naderi S. Testosterone Replacement Therapy and the Cardiovascular System. Curr Atheroscler Rep [Internet]. 2016 Apr 1 [cited 2017 Jun 26];18(4):1–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26932226
53. Mooradian AD, Morley JE, Korenman SG. Biological actions of androgens. Endocr Rev [Internet]. 1987 Feb [cited 2017 Jun 26];8(1):1–28. Available from: http://www.ncbi.nlm.nih.gov/pubmed/3549275
54. Shin J, Sung J, Lee K, Song YM. Genetic influence on the association between bone mineral density and testosterone in Korean men. Osteoporos Int [Internet]. 2016 Feb 2 [cited 2017 Jun 26];27(2):643–51. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26329099
55. Dabaja AA, Bryson CF, Schlegel PN, Paduch DA. The effect of hypogonadism and testosterone-enhancing therapy on alkaline phosphatase and bone mineral density. BJU Int [Internet]. 2015 Mar [cited 2017 Jun 26];115(3):480–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25046796
56. Sinnesael M, Claessens F, Laurent M, Dubois V, Boonen S, Deboel L, et al. Androgen receptor (AR) in osteocytes is important for the maintenance of male skeletal integrity: Evidence from targeted AR disruption in mouse osteocytes. J Bone Miner Res [Internet]. 2012 Dec [cited 2017 Jun 26];27(12):2535–43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22836391
57. Kawano H, Sato T, Yamada T, Matsumoto T, Sekine K, Watanabe T, et al. Suppressive function of androgen receptor in bone resorption. Proc Natl Acad Sci U S A [Internet]. 2003 Aug 5 [cited 2017 Jun 26];100(16):9416–21. Available from:
http://www.ncbi.nlm.nih.gov/pubmed/12872002
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC170933
http://www.pnas.org/content/100/16/9416.abstract?ijkey=81dcb86a407a154bb96210c0372da519b870d64e&keytype2=tf_ipsecsha
58. Spoto B, Di Betta E, Mattace-Raso F, Sijbrands E, Vilardi A, Parlongo RM, et al. Pro- and anti-inflammatory cytokine gene expression in subcutaneous and visceral fat in severe obesity. Nutr Metab Cardiovasc Dis [Internet]. 2014 Oct [cited 2017 Jun 26];24(10):1137–43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24984824
59. De Laet C, Kanis JA, Odén A, Johanson H, Johnell O, Delmas P, et al. Body mass index as a predictor of fracture risk: A meta-analysis. Osteoporos Int [Internet]. 2005 Nov 1 [cited 2017 Aug 30];16(11):1330–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15928804
60. Compston JE, Watts NB, Chapurlat R, Cooper C, Boonen S, Greenspan S, et al. Obesity is not protective against fracture in postmenopausal women: Glow. Am J Med [Internet]. 2011 Nov [cited 2017 Aug 30];124(11):1043–50. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22017783
61. Prieto-Alhambra D, Premaor MO, Fina Avilés F, Hermosilla E, Martinez-Laguna D, Carbonell-Abella C, et al. The association between fracture and obesity is site-dependent: A population-based study in postmenopausal women. J Bone Miner Res [Internet]. 2012 Feb [cited 2017 Aug 30];27(2):294–300. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22095911
62. Cornish J, Callon KE, Bava U, Lin C, Naot D, Hill BL, et al. Leptin directly regulates bone cell function in vitro and reduces bone fragility in vivo. J Endocrinol [Internet]. 2002 Nov [cited 2017 Sep 1];175(2):405–15. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12429038
63. Morley JE, Baumgartner RN. Cytokine-Related Aging Process. Journals Gerontol Ser A Biol Sci Med Sci [Internet]. 2004 Sep [cited 2017 Aug 30];59(9):M924–9. Available from: https://academic.oup.com/biomedgerontology/article-lookup/doi/10.1093/gerona/59.9.M924
64. Premaor MO, Comim FV, Compston JE. Obesity and fractures. Arq Bras Endocrinol Metabol [Internet]. 2014 Jul [cited 2017 Aug 30];58(5):470–7. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0004-27302014000500470&lng=en&nrm=iso&tlng=en
65. Yang S, Shen X. Association and relative importance of multiple obesity measures with bone mineral density: the National Health and Nutrition Examination Survey 2005-2006. Arch Osteoporos [Internet]. 2015 Dec 9 [cited 2017 Aug 30];10(1):14. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25957066
66. Knapp KM, Welsman JR, Hopkins SJ, Fogelman I, Blake GM. Obesity Increases Precision Errors in Dual-Energy X-Ray Absorptiometry Measurements. J Clin Densitom [Internet]. 2012 Jul [cited 2017 Aug 30];15(3):315–9. Available from: https://www.ncbi.nlm.nih.gov/pubmed/22402120
http:// linkinghub.elsevier.com/retrieve/pii/S1094695012000054
67. Evans AL, Paggiosi MA, Eastell R, Walsh JS. Bone density, microstructure and strength in obese and normal weight men and women in younger and older adulthood. J Bone Miner Res [Internet]. 2015 May [cited 2017 Aug 30];30(5):920–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25400253
68. Sornay-Rendu E, Boutroy S, Vilayphiou N, Claustrat B, Chapurlat RD. In obese postmenopausal women, bone microarchitecture and strength are not commensurate to greater body weight: The OS des femmes de Lyon (OFELY) study. J Bone Miner Res [Internet]. 2013 Jul [cited 2017 Aug 30];28(7):1679–87. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23371055
69. Himes CL, Reynolds SL. Effect of obesity on falls, injury, and disability. J Am Geriatr Soc [Internet]. 2012 Jan [cited 2017 Aug 30];60(1):124–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22150343
70. Hamrick MW, Ferrari SL. Leptin and the sympathetic connection of fat to bone. Osteoporos Int [Internet]. 2008 Jul [cited 2017 Aug 30];19(7):905– 12. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17924050
71. Lenchik L, Register TC, Hsu FC, Lohman K, Nicklas BJ, Freedman BI, et al. Adiponectin as a novel determinant of bone mineral density and visceral fat. Bone [Internet]. 2003 Oct [cited 2017 Aug 30];33(4):646–51. Available from: http://linkinghub.elsevier.com/retrieve/pii/S8756328203002370
72. Kajimura D, Lee HW, Riley KJ, Arteaga-Solis E, Ferron M, Zhou B, et al.
Adiponectin regulates bone mass via opposite central and peripheral mechanisms through foxo1. Cell Metab [Internet]. 2013 Jun 4 [cited 2017 Aug 30];17(6):901–15. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23684624
73. Riis BJ, Rødbro P, Christiansen C. The role of serum concentrations of sex steroids and bone turnover in the development and occurrence of post-menopausal osteoporosis. Calcif Tissue Int [Internet]. 1986 Jun [cited 2017 Sep 1];38(6):318–22. Available from: http://www.ncbi.nlm.nih.gov/pubmed/3089552
74. Walsh JS, Evans AL, Bowles S, Naylor KE, Jones KS, Schoenmakers I, et al. Free 25-hydroxyvitamin D is low in obesity, but there are no adverse associations with bone health. Am J Clin Nutr [Internet]. 2016 Jun 1 [cited 2017 Aug 30];103(6):1465–71. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27169839.
Palabras Clave
Obesidad
Densidad ósea
Insulina
Factor de crecimiento similar a la insulina
Vitamina D
Leptina
Adiponectina
Estradiol
Testosterona
obesity
bone density
insulin
Insulin-like growth factor
vitamin D
leptin
Adiponectin
testosterone
Para citar
Romero Ortiz, M. C., Roncancio Muñoz, J. S., Bernal, M. A., Martínez Jiménez, L. A., Rincón Lozano, J. D., Pulido Urbano, J. C., Jaramillo Castillo, D. C., Franco Vega, R., Maldonado Acosta, L. M., Arteaga Díaz, J. M., Caminos, J. E., & Rincón Ramírez, J. J. (2017). El hueso, la obesidad y su interacción endocrina. Revista Colombiana De Endocrinología, Diabetes &Amp; Metabolismo, 4(4), 38–45. https://doi.org/10.53853/encr.4.4.151
Revista Colombiana de Endocrinología Diabetes y Metabolismo
Volumen 4 número 4
Favoritos
Resumen
Fragmento.
La relación entre la glándula tiroides, cretinismo, mixedema del adulto y caquexia estrumipriva solo fue definida hacia finales del siglo XIX. El concepto de hipotiroidismo, que hoy nos parece obvio y sencillo, no existía. Habría que esperar a que —a finales del siglo XX— se descubriera el radioinmunoanálisis, se midieran las hormonas tiroideas y la TSH ultrasensible en suero, y se encontraran las desyodasas que en últimas regularían también la función tiroidea a través de la producción periférica de triyodotironina.
Antes de tocar el tema que nos ocupa, es conveniente conocer los antecedentes que se refieren al conocimiento del bocio endémico y su tratamiento en la antigüedad, las primeras descripciones anatómicas de la glándula tiroides, la relación de ésta con el yodo, al hipotiroidismo congénito o cretinismo, y al descubrimiento del hipotiroidismo como tal, dejando para otra ocasión el tema de su tratamiento.
Referencias
1. Singer C, Underwood EA. Breve historia de la Medicina. Ediciones Guadarrama, Madrid 1966. Pp. 497-510
2. Jácome-Roca A. Historia de las Hormonas. Academia Nacional de Medicina, 2008. Pp. 40-45, 59-63, 91,92, 127,128.
3. Neubert A. De Struma. Halis Saxonum, 1853. Pp. 5-14
4. Amaro-Méndez S: Breve historia de la endocrinología. Editorial Científico- Técnica, La Habana, 1975.Pp.
5. Medvei VC. A History of Endocrinology. MTP Press Ltd, Lancaster, England. 1982. Pp. 154-165, 167-170, 189-191, 244-268
6. Quiroga-Sánchez VG. Origen del nombre de la glándula tiroides o tiroidea- Rev Endocrinol Nutr 2013; 21 (4): 154-158
7. Pizarro F. Tiroides y bocio: evolución histórica y sus grandes personajes… Desault, Kocher. Rev Med Clin Condes 2013; 24 (5) 882-885
8. Fragu P. [The history of science with regard to the thyroid gland (1800- 1960)]. Ann Endocrinol (Paris). 1999; 60(1):10-22.
9. Danowsi TS. Clinical Endocrinology. Third Volume: Thyroid. Williams & Wilkins Baltimore, 1962. Pp: 405-428.
10. Autores varios. “cretino”. Stefan Slater http://etimologias.dechile.net/?cretino
11. King TW. Observations on the thyroid gland. Guy’s Hosp Rep 1836;1:429–46
12. Curling TB. Two cases of Absence of the Thyroid Body, and symmetrical swellings of fat tissue at the sides of the neck, connected with defective cerebral development. Med-Chir Trans 1850;33:303-306
13. Fagge CH. On sporadic cretinism, occurring in England. Med-Chir Trans 1871;54:155–70
14. Gull WW. On a Cretinoid State supervening in Adult Life in Women. Trans Clin Soc Lond 1874;7:180–5
15. Ord WM. On Myxoedema, a term proposed to be applied to an essential condition in the “Cretinoid” Affection occasionally observed in Middle-Aged Women. Med-Chir Trans 1878;61:57–78
16. Ord WM, White E. Clinical remarks on certain changes observed in the urine in myxoedema after the administration of glycerine extract of thyroid gland. BMJ 1893;ii:217
17. Horsley V. Note on a possible means of arresting the progress of myxoedema, cachexia strumipriva, and allied diseases. BMJ 1890;i:287–8
18. Horsley V. On the function of the thyroid gland. Proc Roy Soc Lond 1885;38:5–7
19. Tröhler U. Towards endocrinology: Theodor Kocher’s 1883 account of the unexpected effects of total ablation of the thyroid. James Lind Library 2010. www.jameslindlibrary.org
20. Kocher ET. Concerning pathological manifestations in low grade thyroid diseases. Nobel Lecture, December 11, 1909. In: Nobel Lectures, Physiology or Medicine 1901–1921. Amsterdam: Elsevier; 1967:330–83
21. Welbourn RB. Highlights from endocrine surgical history. World J Surg 1996;20:603–12
22. Andrén-Sandberg A, Mai G. Theodor Kocher (1841–1917) – a surgical maestro. Dig Surg 2001;18:311–16
23. Ellis H. Theodor Kocher: the first surgeon to be awarded the Nobel Prize. Brit J Hosp Med 2009;70:157
24. Liebermann-Meffert D. Short story of Theodor Kocher’s life and relationship to the International Society of Surgery. World J Surg 2000; 24:2–9
25. Semon F. In discussion of ’A typical case of myxoedema’ by FD Drewitt in the Proceedings of the Clinical Society of London. BMJ 1883;ii:1072–4
26. Brown-Séquard CÉ. Du role physiologique et thérapeutique d’un suc extrait de testicules d’animaux d’après nombre de faits observés chez l’homme. Arch physiol normale patholog 1889;(5e sér)1:739–46
27. Clinical Society of London Report of a committee nominated December 14, 1883, to investigate the subject of myxoedema. Trans Clin Soc Lond 1888; 21 Suppl.
Palabras Clave
hipotiroidismo
bocio endémico
tiroides
yodo y tiroides
cretinismo
Para citar
Jácome Roca, A. (2017). Descubrimiento del hipotiroidismo. Revista Colombiana De Endocrinología, Diabetes &Amp; Metabolismo, 4(4), 32–37. https://doi.org/10.53853/encr.4.4.150
Revista Colombiana de Endocrinología Diabetes y Metabolismo
Volumen 4 número 4
Favoritos
Resumen
Las enfermedades crónicas no transmisibles son las entidades que tienen mayor repercusión en el sector salud a nivel global. Quizá una de las circunstancias que más se encuentra relacionada con el aumento progresivo en muchas de estas entidades es la obesidad. Las causas y posibles planes terapéuticos para la obesidad son complejos, por tal motivo deben ser enfocados desde diferentes tejidos en el organismo. Uno de estos enfoques sería la regulación del centro del hambre y la saciedad a nivel central, especialmente en el hipotálamo, otro es la forma como el individuo gasta su energía en las células musculares y un aspecto adicional es la forma en que las células adiposas almacenan y ahorran energía. En los últimos años se ha observado que los individuos adultos cuentan con diferentes tipos de células adiposas con origen germinal divergente. La presencia de estas células adiposas puede tener una variación fenotípica y en determinadas circunstancias podría presentar una función más termogénica de acuerdo con diferentes circunstancias ambientales. La influencia del ambiente se realiza mediante la modificación de genes específicos, que pueden determinar una variación funcional del hipotálamo, el músculo y el tejido adiposo. Estas modificaciones son denominadas epigenéticas, dado que no influyen sobre la estructura del ADN, pero cambian completamente su funcionalidad. En el presente trabajo hemos realizado un estudio de las circunstancias a través de las cuales el ambiente puede tener influencia en la aparición de la obesidad. Se ha realizado una búsqueda mediante las bases de datos de Pubmed, Evidencia Based Medicine, Science direct, Ovid, EBSCO, Proquest, Springer, desde enero del año 2012 hasta marzo del año 2017, buscando como palabras clave, obesidad, adipocito y los términos epigenética y ambiente.
Referencias
1. Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. The Lancet. 2014;384(9945):766-81.
2. Kelly T, Yang W, Chen CS, Reynolds K, He J. Global burden of obesity in 2005 and projections to 2030. Int J Obes (Lond). 2008;32(9):1431-7.
3. Ogden CL, Carroll MD, Fryar CD, Flegal KM. Prevalence of Obesity Among Adults and Youth: United States, 2011-2014. NCHS Data Brief. 2015(219):1-8.
4. Gregg EW, Shaw JE. Global Health Effects of Overweight and Obesity. N Engl
J Med. 2017.
5. Urbina EM, Gidding SS, Bao W, Elkasabany A, Berenson GS. Association of fasting blood sugar level, insulin level, and obesity with left ventricular mass in healthy children and adolescents: The Bogalusa Heart Study. Am Heart J. 1999;138(1 Pt 1):122-7.
6. Farooqi S, O’Rahilly S. Genetics of obesity in humans. Endocr Rev. 2006;27(7):710-18.
7. Fall T, Mendelson M, Speliotes EK. Recent Advances in Human Genetics and Epigenetics of Adiposity: Pathway to Precision Medicine? Gastroenterology. 2017;152(7):1695-706.
8. Nan C, Guo B, Warner C, Fowler T, Barrett T, Boomsma D, et al. Heritability of body mass index in pre-adolescence, young adulthood and late adulthood. Eur J Epidemiol. 2012;27(4):247-53.
9. Waddington CH. The epigenotype. 1942. Int J Epidemiol. 2012;41(1):10-3.
10. Bird A. Perceptions of epigenetics. Nature. 2007;447(7143):396-8.
11. Reddy MA, Natarajan R. Epigenetic mechanisms in diabetic vascular complications. Cardiovasc Res. 2011;90(3):421-9.
12. Campion J, Milagro F, Martinez JA. Epigenetics and obesity. Prog Mol Biol Transl Sci. 2010;94:291-347.
13. Miranda TB, Jones PA. DNA methylation: the nuts and bolts of repression. J Cell Physiol. 2007;213(2):384-90.
14. Egger G, Liang G, Aparicio A, Jones PA. Epigenetics in human disease and prospects for epigenetic therapy. Nature. 2004;429(6990):457-63.
15. Cedar H, Bergman Y. Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet. 2009;10(5):295-304.
16. Hammond SM. Dicing and slicing: the core machinery of the RNA interference pathway. FEBS Lett. 2005;579(26):5822-9.
17. Humphreys DT, Westman BJ, Martin DI, Preiss T. MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function. Proc Natl Acad Sci U S A. 2005;102(47):16961-6.
18. Coelho M, Oliveira T, Fernandes R. Biochemistry of adipose tissue: an endocrine organ. Arch Med Sci. 2013;9(2):191-200.
19. Yang H, Youm YH, Vandanmagsar B, Ravussin A, Gimble JM, Greenway F, et al. Obesity increases the production of proinflammatory mediators from adipose tissue T cells and compromises TCR repertoire diversity: implications for systemic inflammation and insulin resistance. J Immunol. 2010;185(3):1836-45.
20. Lizcano F, Vargas D. Biology of Beige Adipocyte and Possible Therapy for Type 2 Diabetes and Obesity. Int J Endocrinol. 2016;2016:9542061.
21. Vargas D, Shimokawa N, Kaneko R, Rosales W, Parra A, Castellanos A, Koibuchi N, Lizcano F. Regulation of Human subcuataneous adipocyte differentiation by EID1. J Mol Endocrinol. 2016;56:113-22..
22. Sanchez-Gurmaches J, Guertin DA. Adipocytes arise from multiple lineages that are heterogeneously and dynamically distributed. Nat Commun. 2014;5:4099.
23. Langin D. Recruitment of brown fat and conversion of white into brown adipocytes: strategies to fight the metabolic complications of obesity? Biochimica et biophysica acta. 2010;1801(3):372-6.
24. Trayhurn P, Beattie JH. Physiological role of adipose tissue: white adipose tissue as an endocrine and secretory organ. Proc Nutr Soc. 2001;60(3):329-39.
25. Willson TM, Brown PJ, Sternbach DD, Henke BR. The PPARs: from orphan receptors to drug discovery. J Med Chem. 2000;43(4):527-50.
26. Shinoda K, Luijten IH, Hasegawa Y, Hong H, Sonne SB, Kim M, et al. Genetic and functional characterization of clonally derived adult human brown adipocytes. Nat Med. 2015;21(4):389-94.
27. Sidossis L, Kajimura S. Brown and beige fat in humans: thermogenic adipocytes that control energy and glucose homeostasis. J Clin Invest. 2015;125(2):478-86.
28. Seale P, Bjork B, Yang W, Kajimura S, Chin S, Kuang S, et al. PRDM16 controls a brown fat/skeletal muscle switch. Nature. 2008;454(7207):961-7.
29. Enerback S. The origins of brown adipose tissue. N Engl J Med. 2009;360(19):2021-3.
30. Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, et al. Identification and importance of brown adipose tissue in adult humans. N Engl J Med. 2009;360(15):1509-17.
31. Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T, et al. Functional brown adipose tissue in healthy adults. N Engl J Med. 2009; 360(15):1518-25.
32. Wu J, Bostrom P, Sparks LM, Ye L, Choi JH, Giang AH, et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell. 2012;150(2):366-76.
33. Long JZ, Svensson KJ, Tsai L, Zeng X, Roh HC, Kong X, et al. A smooth muscle- like origin for beige adipocytes. Cell Metab. 2014;19(5):810-20.
34. Lee YH, Petkova AP, Mottillo EP, Granneman JG. In vivo identification of bipotential adipocyte progenitors recruited by beta3-adrenoceptor activation and high-fat feeding. Cell Metab. 2012;15(4):480-91.
35. Rosenwald M, Perdikari A, Rulicke T, Wolfrum C. Bi-directional interconversion of brite and white adipocytes. Nat Cell Biol. 2013;15(6):659-67.
36. Hondares E, Mora O, Yubero P, Rodriguez de la Concepcion M, Iglesias R, Giralt M, et al. Thiazolidinediones and rexinoids induce peroxisome proliferator-activated receptor-coactivator (PGC)-1alpha gene transcription: an autoregulatory loop controls PGC-1alpha expression in adipocytes via peroxisome proliferator-activated receptor-gamma coactivation. Endocrinology. 2006;147(6):2829-38.
37. Qiang L, Wang L, Kon N, Zhao W, Lee S, Zhang Y, et al. Brown remodeling of white adipose tissue by SirT1-dependent deacetylation of Ppargamma. Cell. 2012;150(3):620-32.
38. Kajimura S, Spiegelman BM, Seale P. Brown and Beige Fat: Physiological Roles beyond Heat Generation. Cell Metab. 2015;22(4):546-59.
39. Herrera BM, Keildson S, Lindgren CM. Genetics and epigenetics of obesity. Maturitas. 2011;69(1):41-9.
40. Barres R, Zierath JR. DNA methylation in metabolic disorders. Am J Clin Nutr. 2011;93(4):897S-900.
41. Kuroda A, Rauch TA, Todorov I, Ku HT, Al-Abdullah IH, Kandeel F, et al. Insulin gene expression is regulated by DNA methylation. PLoS One. 2009;4(9):e6953.
42. Fujiki K, Kano F, Shiota K, Murata M. Expression of the peroxisome proliferator activated receptor gamma gene is repressed by DNA methylation in visceral adipose tissue of mouse models of diabetes. BMC Biol. 2009;7:38.
43. Kasinska MA, Drzewoski J, Sliwinska A. Epigenetic modifications in adipose tissue - relation to obesity and diabetes. Arch Med Sci. 2016;12(6):1293- 301.
44. Malodobra-Mazur M, Dziewulska A, Kozinski K, Dobrzyn P, Kolczynska K, Janikiewicz J, et al. Stearoyl-CoA desaturase regulates inflammatory gene expression by changing DNA methylation level in 3T3 adipocytes. Int J Biochem Cell Biol. 2014;55:40-50.
45. Bouchard L, Rabasa-Lhoret R, Faraj M, Lavoie ME, Mill J, Perusse L, et al. Differential epigenomic and transcriptomic responses in subcutaneous adipose tissue between low and high responders to caloric restriction. Am J Clin Nutr. 2010;91(2):309-20.
46. Cordero P, Campion J, Milagro FI, Goyenechea E, Steemburgo T, Javierre BM, et al. Leptin and TNF-alpha promoter methylation levels measured by MSP could predict the response to a low-calorie diet. J Physiol Biochem. 2011;67(3):463-70.
47. Dick KJ, Nelson CP, Tsaprouni L, Sandling JK, Aissi D, Wahl S, et al. DNA methylation and body-mass index: a genome-wide analysis. Lancet. 2014;383(9933):1990-8.
48. Feinberg AP, Irizarry RA, Fradin D, Aryee MJ, Murakami P, Aspelund T, et al. Personalized epigenomic signatures that are stable over time and covary with body mass index. Sci Transl Med. 2010;2(49):49ra67.
49. Tateishi K, Okada Y, Kallin EM, Zhang Y. Role of Jhdm2a in regulating metabolic gene expression and obesity resistance. Nature. 2009;458(7239):757- 61.
50. Lizcano F, Romero C, Vargas D. Regulation of adipogenesis by nuclear receptor PPARgamma is modulated by the histone demethylase JMJD2C. Genet Mol Biol. 2011;34(1):19-24.
51. Abu-Farha M, Tiss A, Abubaker J, Khadir A, Al-Ghimlas F, Al-Khairi I, et al. Proteomics analysis of human obesity reveals the epigenetic factor HDAC4 as a potential target for obesity. PLoS One. 2013;8(9):e75342.
52. Dalgaard K, Landgraf K, Heyne S, Lempradl A, Longinotto J, Gossens K, et al. Trim28 Haploinsufficiency Triggers Bi-stable Epigenetic Obesity. Cell. 2016;164(3):353-64.
53. Ferland-McCollough D, Fernandez-Twinn DS, Cannell IG, David H, Warner M, Vaag AA, et al. Programming of adipose tissue miR-483-3p and GDF-3 expression by maternal diet in type 2 diabetes. Cell Death Differ. 2012;19(6):1003-12.
54. Esau C, Kang X, Peralta E, Hanson E, Marcusson EG, Ravichandran LV, et al. MicroRNA-143 regulates adipocyte differentiation. J Biol Chem. 2004;279(50):52361-5
Palabras Clave
Obesidad
Epigenética
Tejido adiposo
Expresión genética
Para citar
Abondano, J., & Lizcano, F. (2017). Epigenética en el origen de la obesidad: perspectiva desde la célula grasa. Revista Colombiana De Endocrinología, Diabetes &Amp; Metabolismo, 4(4), 24–31. https://doi.org/10.53853/encr.4.4.149
Revista Colombiana de Endocrinología Diabetes y Metabolismo
Volumen 4 número 4
Favoritos
Resumen
El feocromocitoma y el paraganglioma son tumores neuroendocrinos derivados de la cresta neural. Son tumores infrecuentes en la práctica clínica diaria. El feocromocitoma está localizado en la médula suprarrenal y el paraganglioma es un tumor localizado en los paraganglios del sistema nervioso autónomo, por ende, su localización es extraadrenal. Existen predictores clínicos de malignidad como el tamaño, la localización y las mutaciones en SHDB. La presencia de predictores clínicos y la supervivencia según el compromiso metastásico en aquellos casos con feocromocitoma/ paraganglioma maligno ha permitido por primera vez crear la clasificación TNM para esta enfermedad. Adicionalmente, la evaluación genética se ha establecido como el paradigma de manejo. Los resultados del análisis del genoma del feocromocitoma confirman una alta heredabilidad de esta enfermedad y descubren nuevos genes que pueden convertirse en objetivosterapéuticos para el futuro.
Referencias
1. Román-González A, Sierra-Zuluaga J, Gutiérrez-Restrepo J, Builes-Barrera C, Jiménez-Vásquez C. Feocromocitoma-Paraganglioma: revisión de tema. Medicina y Laboratorio. 2015;21(5-6):111-30.
2. Dahia PL. Pheochromocytoma and paraganglioma pathogenesis: learning from genetic heterogeneity. Nat Rev Cancer. 2014;14(2):108-19.
3. Jimenez C, Libutti S, Landry C, Lloyd R, McKay R, Rohren E, et al. Adrenal- Neuroendocrine Tumors. In: Amin MB, Edge S, Greene F, Byrd DR, Brook- land RK, Washington MK, et al., editors. AJCC Cancer Staging Manual. 8 ed. New York: Springer; 2017. p. 919-27.
4. Fishbein L, Leshchiner I, Walter V, Danilova L, Robertson AG, Johnson AR, et al. Comprehensive Molecular Characterization of Pheochromocytoma and Paraganglioma. Cancer Cell. 2017.
5. Roman-Gonzalez A, Jimenez C. Malignant pheochromocytoma-paraganglioma: pathogenesis, TNM staging, and current clinical trials. Curr Opin Endo- crinol Diabetes Obes. 2017.
6. Roman-Gonzalez A, Zhou S, Ayala-Ramirez M, Shen C, Waguespack SG, Habra MA, et al. Impact of Surgical Resection of the Primary Tumor on Overall Survival in Patients With Metastatic Pheochromocytoma or Sympathetic Paraganglioma. Ann Surg. 2017.
7. Roman-González A, Jiménez-Vásquez P, Hyde SM, Jessop A, Jimenez C. Management of Locally Advanced and Metastatic Pheochromocytoma and Paraganglioma. In: Electron K, editor. Management of Adrenal Masses in Children and Adults. 1: Springer International Publishing; 2016. p. 277-300.
8. Jimenez C, Waguespack S, Habra M, Busaidy N, Dadu R, Tamsen G, et al. Cabozantanib in patients with unresectable metastatic pheochromocytoma and paraganglioma. Global Academic Programs of Cancer Centers Symposium; Houston, Tx2017.
9. Jimenez C, Pryma DA, Sullivan DC, Schwarz JK, Noto RB, Stambler N, et al. Long Term Follow-up of a Pivotal Phase 2 Study of Ultratrace® Iobenguane I-131 (AZEDRATM) in Patients with Malignant Relapsed/Refractory Pheochromocytoma (Pheo)/Paraganglioma (Para). Endocrine Reviews. 2015;36(2):OR24-6.
10. Ayala-Ramirez M, Feng L, Johnson MM, Ejaz S, Habra MA, Rich T, et al. Clinical risk factors for malignancy and overall survival in patients with pheochromocytomas and sympathetic paragangliomas: primary tumor size and primary tumor location as prognostic indicators. J Clin Endocrinol Metab. 2011;96(3):717-25.
11. Amar L, Baudin E, Burnichon N, Peyrard S, Silvera S, Bertherat J, et al. Succinate dehydrogenase B gene mutations predict survival in patients with malignant pheochromocytomas or paragangliomas. J Clin Endocrinol Metab. 2007;92(10):3822-8.
12. Waguespack SG, Rich T, Grubbs E, Ying AK, Perrier ND, Ayala-Ramirez M, et al. A current review of the etiology, diagnosis, and treatment of pediatric pheochromocytoma and paraganglioma. J Clin Endocrinol Metab. 2010;95(5):2023-37.
13. Cascón A, Pita G, Burnichon N, Landa I, López-Jiménez E, Montero-Conde C, et al. Genetics of pheochromocytoma and paraganglioma in Spanish patients. J Clin Endocrinol Metab. 2009;94(5):1701-5.
14. Thosani S, Ayala-Ramirez M, Palmer L, Hu MI, Rich T, Gagel RF, et al. The characterization of pheochromocytoma and its impact on overall survival in multiple endocrine neoplasia type 2. J Clin Endocrinol Metab. 2013;98(11):E1813-9.
15. Rich TA, Jonasch E, Matin S, Waguespack SG, Gombos DS, Santarpia L, et al. A novel von Hippel-Lindau point mutation presents as apparently sporadic pheochromocytoma. Cancer Invest. 2008;26(6):642-6.
16. Jimenez C, Cabanillas ME, Santarpia L, Jonasch E, Kyle KL, Lano EA, et al. Use of the tyrosine kinase inhibitor sunitinib in a patient with von Hippel- Lindau disease: targeting angiogenic factors in pheochromocytoma and other von Hippel-Lindau disease-related tumors. J Clin Endocrinol Metab. 2009;94(2):386-91.
17. Gruber LM, Erickson D, Babovic-Vuksanovic D, Thompson GB, Young WF, Bancos I. Pheochromocytoma and paraganglioma in patients with neurofibromatosis type 1. Clin Endocrinol (Oxf ). 2017;86(1):141-9.
18. Baysal BE, Ferrell RE, Willett-Brozick JE, Lawrence EC, Myssiorek D, Bosch A, et al. Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science. 2000;287(5454):848-51.
19. Baysal BE, Maher ER. 15 YEARS OF PARAGANGLIOMA: Genetics and mechanism of pheochromocytoma-paraganglioma syndromes characterized by germline SDHB and SDHD mutations. Endocr Relat Cancer. 2015;22(4):T71- 82.
20. Castro-Vega LJ, Lepoutre-Lussey C, Gimenez-Roqueplo AP, Favier J. Rethinking pheochromocytomas and paragangliomas from a genomic perspective. Oncogene. 2016;35(9):1080-9.
21. Pillai S, Gopalan V, Smith RA, Lam AK. Updates on the genetics and the clinical impacts on phaeochromocytoma and paraganglioma in the new era. Crit Rev Oncol Hematol. 2016;100:190-208.
22. Choueiri TK, Halabi S, Sanford BL, Hahn O, Michaelson MD, Walsh MK, et al. Cabozantinib Versus Sunitinib As Initial Targeted Therapy for Patients With Metastatic Renal Cell Carcinoma of Poor or Intermediate Risk: The Alliance A031203 CABOSUN Trial. Journal of Clinical Oncology 2016;Published online before print November 14, 2016
23. Hao Z, Sadek I. Sunitinib: the antiangiogenic effects and beyond. Onco Targets Ther. 2016;9:5495-505.
24. Jimenez C, Rohren E, Habra MA, Rich T, Jimenez P, Ayala-Ramirez M, et al. Current and future treatments for malignant pheochromocytoma and sympathetic paraganglioma. Curr Oncol Rep. 2013;15(4):356-71.
25. Baudin E, Habra MA, Deschamps F, Cote G, Dumont F, Cabanillas M, et al. Therapy of endocrine disease: treatment of malignant pheochromocytoma and paraganglioma. Eur J Endocrinol. 2014;171(3):R111-22.
26. Ayala-Ramirez M, Chougnet CN, Habra MA, Palmer JL, Leboulleux S, Cabanillas ME, et al. Treatment with sunitinib for patients with progressive metastatic pheochromocytomas and sympathetic paragangliomas. J Clin Endocrinol Metab. 2012;97(11):4040-50.
27. Yakes FM, Chen J, Tan J, Yamaguchi K, Shi Y, Yu P, et al. Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol Cancer Ther. 2011;10(12):2298-308.
28. Gordon MS, Vogelzang NJ, Schoffski P, Daud A, Spira AI, O’Keeffe BA, et al. Activity of cabozantinib (XL184) in soft tissue and bone: Results of a phase II randomized discontinuation trial (RDT) in patients (pts) with advanced solid tumors. J Clin Oncol. 2011;29 (suppl; abstr 3010).
29. Barrett JA, Joyal JL, Hillier SM, Maresca KP, Femia FJ, Kronauge JF, et al. Comparison of high-specific-activity ultratrace 123/131I-MIBG and carrier- added 123/131I-MIBG on efficacy, pharmacokinetics, and tissue distribution. Cancer biotherapy & radiopharmaceuticals. 2010;25(3):299-308.
30. Coleman RE, Stubbs JB, Barrett JA, de la Guardia M, Lafrance N, Babich JW. Radiation dosimetry, pharmacokinetics, and safety of ultratrace Iobenguane I-131 in patients with malignant pheochromocytoma/paraganglioma or metastatic carcinoid. Cancer biotherapy & radiopharmaceuticals. 2009;24(4):469-75.
31. https://clinicaltrials.gov/ct2/show/NCT00874614
32. Bertani E, Fazio N, Botteri E, Chiappa A, Falconi M, Grana C, et al. Resection of the primary pancreatic neuroendocrine tumor in patients with unresectable liver metastases: possible indications for a multimodal approach. Surgery. 2014;155(4):607-14.
33. Capurso G, Bettini R, Rinzivillo M, Boninsegna L, Delle Fave G, Falconi M. Role of resection of the primary pancreatic neuroendocrine tumour only in patients with unresectable metastatic liver disease: a systematic review. Neuroendocrinology. 2011;93(4):223-9.
34. Dy BM, Strajina V, Cayo AK, Richards ML, Farley DR, Grant CS, et al. Surgical resection of synchronously metastatic adrenocortical cancer. Ann Surg Oncol. 2015;22(1):146-51.
35. Goffredo P, Sosa JA, Roman SA. Malignant pheochromocytoma and paraganglioma: a population level analysis of long-term survival over two decades. J Surg Oncol. 2013;107(6):659-64.
36. Strajina V, Dy BM, Farley DR, Richards ML, McKenzie TJ, Bible KC, et al. Surgical Treatment of Malignant Pheochromocytoma and Paraganglioma: Retrospective Case Series. Ann Surg Oncol. 2017.
Palabras Clave
feocromocitoma
paraganglioma
neuroendocrinología
Para citar
Román-González, A. (2017). Nuevos conceptos en feocromocitoma y paraganglioma en el 2017. Revista Colombiana De Endocrinología, Diabetes &Amp; Metabolismo, 4(4), 19–23. https://doi.org/10.53853/encr.4.4.148